

ABN 64 002 841 063

Lemko Place, Penrith NSW 2750 Telephone (02) 4722 2700 e-mail: info@geotech.com.au PO Box 880, Penrith NSW 2751 Facsimile (02) 4722 2777 www.geotech.com.au

ABN 64 002 841 063

Job No: 14160/1 Our Ref: 14160/1-AA Amended 2 21 June 2018

Blacktown City Council P O Box 63 BLACKTOWN NSW 2148

Re: Proposed Cemetery Extension St Bartholomew Place, Prospect Geotechnical Investigation

This report presents results of a geotechnical investigation carried out for proposed cemetery extension at St Bartholomew Place, Prospect.

The proposal seeks to rezone 8.39 hectares of land to allow for the expansion of the existing St Bartholomew's Cemetery. The cemetery expansion will be developed in stages. New burial space is expected to become available in stages, approximately 5 years after development consent is granted for the cemetery.

This report provides (1) assessment of sub-surface profile across the site (2) statement that the geotechnical conditions across the site do not impose any constraint on proposed cemetery expansion and (3) geotechnical recommendations on cut and fill methods and design of batter slopes, footings and pavement.

If you have any questions, please do not hesitate to contact the undersigned.

Yours faithfully GEOTECHNIQUE PTY LTD

INDRA JWORCHAN Principal Geotechnical Engineer

TABLE OF CONTENTS

1.0	BA	ACKGROUND1
2.0	E۶	ISTING CONDITIONS1
2.	1	Land Use1
2.	2	Access to the Site2
2.	3	Road Network2
		3.1 Adjoining Roads2
3.0		JTURE CONDITIONS3
3.		Land Use3
4.0		ECUTIVE SUMMARY OF REPORT4
5.0	RE	EVIEW OF AVAILABLE INFORMATION4
6.0	FI	ELD WORK4
7.0	รเ	JB-SURFACE CONDITIONS5
8.0	LA	BORATORY TESTING6
9.0	D	SCUSSION AND RECOMMENDATIONS7
9.	1	Soil Erodibility7
9.	2	Soil Salinity7
9.	3	Exposure Classification8
9.	4	Excavation Condition9
9.	5	Fill Placement9
9.	6	Batter Slopes and Retaining Structures 10
9.	7	Impacts from Groundwater 11
9.	8	Footings 11
9.	9	Preliminary Pavement Design 12
10.0	SA	ALINE SOIL MANAGEMENT PLAN (SSMP) 13
		DNCLUSIONS 14
		* * * * * * * * * * * * * * * * * * * *

Attached Drawing No 14160/1-AA1R1 Test Pit Location Plan Excavation Logs Laboratory Test Results

1.0 Background

The existing St Bartholomew's Church and Cemetery is located on a 3.17-hectares lot of Ponds Road, Prospect. The cemetery comprises approximately 3,600 occupied graves. In January 2016, Blacktown City Council (Council) received approximately 6 hectares of land east of St Bartholomew's Church from the New South Wales (NSW) State Government under a Land Transfer Agreement. In addition, Council intends to acquire approximately 2 hectares of land east of the existing cemetery. Further to this, Council is seeking to close St Bartholomew's Place (approximately 0.39 hectares), with the intention of including it in the expansion of the cemetery. This equates to a total of 11.56 hectares of land proposed to be used for the expanded cemetery.

A planning proposal (PP) is being prepared, which seeks to reactivate the existing church and cemetery on the 3.17-hectare land and to reclassify the Council-owned expansion lands from "community land" to "operational land" and to rezone the cemetery expansion lands from RE1 Public Recreation, RU4 Primary Production Small Lots and SP2 Classified Road, under BLEP2015 to SP1 Cemetery. In addition to the existing church and cemetery, the expanded cemetery is likely to include ancillary facilities such as an office, café, flower shop and potentially a chapel. They will most likely be in the vicinity of Tarlington Place. Details will be determined at the DA stage.

2.0 Existing Conditions

2.1 Land Use

The site is located on land between the Great Western Highway (GWH) to the north and M4 Western Motorway (M4) to the south and is bounded by the Prospect Highway to the west. The existing cemetery has an area of approximately 3.17 hectares, with the newly acquired land adding a further 6 hectares. A further 2.39 hectares of land is also intended to be acquired, including 2 hectares from other land owners and 0.39 hectares from the closure of St Bartholomew's Place, bringing the total area for the proposed cemetery site to 11.56 hectares. This is an increase of 8.39 hectares to the existing cemetery. The existing cemetery is zoned SP1 Cemetery under Blacktown LEP 2015. The cemetery expansion land:

- Is predominantly zoned RE1 Public Recreation
- Includes land zoned RU4 Primary Production Small Lots (the site of the old Prospect Post Office)
- Includes land zoned SP2 Classified Road to the south of the existing cemetery.

The existing cemetery contains approximately 3,600 utilised graves. As the last church service was held on the site in 1967 and no new interment rights have been sold at the cemetery since 1972, the existing cemetery site does not regularly attract many visitors.

The cemetery expansion land has been largely vacant and unused since the former Prospect Village (along Tarlington Place) was disrupted and eventually vacated/demolished following the realignment of the Great Western Highway in 1968 and the construction of the M4 Western Motorway in 1990. The location of the site and its surrounding environs is shown in Figure 1.

Figure 1: Subject Site and its Environs

2.2 Access to the Site

Access to and from Tarlington Place can be achieved through the Great Western Highway in the eastbound and westbound directions. Eastbound access is gained via a right turn bay. Access points to the existing cemetery are from Ponds Road, Prospect.

2.3 Road Network

2.3.1 Adjoining Roads

Great Western Highway

The GWH is classified as a Roads and Maritime State Road and is aligned in an east-west direction to the site's north. It is a two-way road with 3 westbound lanes and 4 eastbound lanes near the site, set within a 32 metre carriageway with an approximately 9 metre central median. Being an arterial road, no parking is permitted. The GWH has a posted speed limit of 80 km/h.

Prospect Highway

The Prospect Highway is classified as a Roads and Maritime State Road and is aligned in a north-south direction to the site's west. It is a two-way road with generally one lane in each direction, set within an approximately seven-metre carriageway. Kerbside parking is not permitted, and the road has a posted speed limit of 60 km/h.

Ponds Road

Ponds Road is classified as a Roads and Maritime State Road and is aligned in an east-west direction along with the site's north-western boundary. It is a two-way road with 1 lane in each direction, set within an approximately 7 metre carriageway. Ponds Road functions as an exit-ramp to the GWH and connects with the Prospect Highway to the west. It also provides access to the existing cemetery and St Bartholomew's Church. Ponds Road has a posted speed limit of 60 km/h.

M4 Western Motorway

The M4 is classified as a Roads and Maritime State Road and is aligned in an east-west direction to the site's south. It is a two-way road with generally 3 lanes in each direction, set over an approximately 22-metre-wide carriageway including a central separation barrier. The Western Motorway has a posted speed limit of 100km/h in the vicinity of the site, with off and on ramps provided to/from the Prospect Highway.

Tarlington Place and St Bartholomew's Place

Tarlington Place and St Bartholomew's Place are classified as Local Roads and are internal roads located within the subject site. St Bartholomew's Place is an unsealed road which runs along the eastern boundary of the existing cemetery while Tarlington Place is a sealed road and primarily functions as the access road to 23 Tarlington Place (the old Prospect Post Office).

Council is looking to close St Bartholomew's Place (0.39 hectares) and absorb it into the cemetery expansion lands. It could, however, still function as an access point and internal cemetery road.

Vehicle access to the site is proposed via the existing 2 driveways along Ponds Road (access 1 and access 2) and Tarlington Place (access three3 St Bartholomew's Place, whilst proposed to be closed, may also be used as an access point, depending on how the development is staged.

The internal road network will be determined at the Development Application stage. It is recommended that an internal link between the existing and expanded cemetery areas to be provided.

3.0 Future Conditions

3.1 Land Use

The proposal seeks to rezone 8.39 hectares of land to allow for the expansion of the existing St Bartholomew's Cemetery. The cemetery expansion will be developed in stages. New burial space is expected to become available in stages, approximately 5 years after development consent is granted for the cemetery. The site plan is outlined above in Figure 1. The expanded cemetery is expected to ultimately include:

- Over 10,000 burial plots
- Above ground crypts
- Columbarium walls for ashes interment
- Ancillary facilities (such as an office, café, flower shop and potentially a chapel) with associated car parking, in the vicinity of Tarlington Place.

Area Schedule

	Size	
Existing Cemetery	Reactivation of existing church and cemetery ^[1]	3.17 hectares
Future Cemetery Expansion	Cemetery expansion and ancillary facilities ^[2]	8.39 hectares
	11.56 hectares	

4.0 Executive Summary of Report

The sub-surface profile across the site comprises a sequence of topsoil and clayey residual soils (to depths of 1.6m to more than 2.5m) underlain by bedrock shale. The depth to groundwater level across the site is likely to be in excess of 2.5m from existing ground surface. Geotechnical investigation indicates that the geotechnical conditions across the site do not impose any constraint on proposed cemetery expansion and provides the following recommendations:

- Earthworks should be carried out in accordance with recommended Saline Soil Management Plan.
- Controlled fill should comprise suitable materials after environmental validation and compacted to a Minimum Dry Density Ratio (MDDR) of 95% Standard, at moisture content within 2% of Optimum Moisture Content (OMC). However, upper 500mm of controlled fill forming subgrade for roads should be compacted to a MDDR of 100% Standard, at moisture content within 2% of OMC.
- Permanent cut and fill slopes should be battered at 1 vertical to 2.5 horizontal or retained with engineered retaining structures.
- Footings may be founded in controlled fill, residual soils or bedrock and designed for allowable bearing pressure of 100kPa, 125kPa and 700kPa respectively.
- Road and car park pavements are designed for indicative subgrade CBR value of 3.0%

5.0 Review of Available Information

Reference to the Geological Map of Penrith (scale 1:100,000) indicates that the bedrock at the site is Bringelly Shale, belonging to the Wianamatta Group of rocks and comprising shale, carbonaceous claystone, laminite, fine to medium grained lithic sandstone and rare coal.

Reference to the Soil Landscape Map of Sydney (scale 1:100,000) indicates that the landscape at the site belongs to Blacktown Group, which is characterised with gently undulating rises on Wianamatta Group shales, with local relief to 30.0m, ground slope of less than 5 percent and broad rounded crests. The sub-surface soil within this landscape is likely to be up to 3.0m thick, moderately reactive, highly plastic and with poor drainage.

Department of Infrastructures, Planning and Natural Resources prepared a Map showing Salinity Potential in Western Sydney (2002) that indicates moderate salinity potential at the proposed development site.

6.0 Field Work

Field work for the geotechnical investigation was carried out on 13 March 2018 and included the following:

- Reviewing available geological information relevant to the proposed development site.
- Attend site safety induction provided by Blacktown City Council.

- Brief Safe Work Method Statement (SWMS) to all sub-contractors to ensure that the field works are carried out safely with due regards to risks associated with test pit excavation and possibility that excavation works may encounter asbestos.
- Reviewing services plans obtained from "Dial Before You Dig" to determine locations of services across the site.
- Carrying out a walk over survey to assess existing site conditions.
- Scanning proposed test pit locations for underground services to ensure that services were not damaged during field work. A specialist services locator was engaged for this purpose.
- Excavating nine test pits (TP4 to TP12) using a backhoe. Test pits were uniformly distributed across the site ensuring these pits are located away from locations with known asbestos occurrence. Test pits were terminated at backhoe refusal in bedrock or depth of about 2.5m from existing ground surface. Approximate test pit locations are indicated on the attached Drawing No 14160/1-AA1R1. Excavation logs are also attached.
- Conducting Dynamic Cone Penetration (DCP) tests adjacent to selected test pits to assess strength of subsurface soils. DCP tests were terminated at refusal or depth of about 1.5m from existing ground surface.
- Recovering representative soil samples for visual assessment and laboratory tests.
- Measuring depths to groundwater level or seepage in the test pits, where encountered.
- Backfill the test pits with excavated materials after logging and sampling.

Field work was supervised by a Field Engineer from this company who was responsible for nominating the test locations, conducting DCP tests, sampling and preparation of field logs.

7.0 Sub-Surface Conditions

Sub-surface profiles encountered in test pits are detailed in attached excavation logs and summarised below in Table 1.

Test Pit No	Termination Depth (m)	Depth Range for Topsoil (m)	Depth Range for Residual Soil (m)	Depth to Bedrock (m)
TP4	1.6	0.0-0.2	0.2-1.6	1.6
TP5	2.5	0.0-0.2	0.2->2.5	Not Encountered
TP6	2.5	0.0-0.2	0.2->2.5	Not Encountered
TP7	2.5	0.0-0.2	0.2->2.5	Not Encountered
TP8	2.5	0.0-0.2	0.2->2.5	Not Encountered
TP9	1.7	0.0-0.2	0.2-1.6	1.6
TP10	2.0	0.0-0.2	0.2-2.0	2.0
TP11	2.5	0.0-0.2	0.2->2.5	Not Encountered
TP12	2.5	0.0-0.2	0.2->2.5	Not Encountered

Table 1 – Sub-surface Profiles encountered in Test Pits

Table 1 indicates that the sub-surface profile across the site comprises a sequence of topsoil and residual underlain by bedrock. However, bedrock was encountered in only three test pits. Remaining six test pits did not encounter bedrock up to termination depths of about 2.5m.

It should be noted that the test pits during this geotechnical investigation were intentionally located away from areas where asbestos contaminated fill could occur. Therefore, even if subsurface profiles described in this report do not show presence of fill, it is possible that localised fill may be encountered in some portions of the site. Assessment of asbestos contaminated fill was beyond the scope of this geotechnical investigation. We understand an Environmental Consultant has been commissioned to carry out contamination assessment.

The subsurface materials may generally be described as follows.

Topsoil/Fill	Silty CLAY, low to medium plasticity, brown, with roots
Residual Soil	Silty CLAY, medium to high plasticity, orange, brown, moisture content lower than or equal to plastic limit, firm to stiff
	Shaley CLAY, medium to high plasticity, grey, brown, moisture content lower than or equal to plastic limit, with some shale fragments and ironstone, stiff to very stiff
Bedrock	SHALE, grey, pale grey, brown, extremely weathered to fresh, very low to medium strength

Groundwater level was not encountered up to borehole termination depth of 0.9m to 2.5m from existing ground surface. Based on observation during test pit, it is our assessment that the depth to groundwater level across the site is likely to be in excess of 2.5m from existing ground surface. It should however be noted that fluctuations in the level of groundwater might occur due to variations in rainfall and/or other factors not evident during drilling.

8.0 Laboratory Testing

Representative soil samples recovered from test pits were tested in the NATA accredited laboratories of SGS Environmental Services and Geotech Testing Pty Ltd to determine Chemical properties including Electrical Conductivity (EC), pH and Exchangeable Sodium Percentage (ESP) and physical properties including Atterberg Limits, optimum moisture content, maximum dry density and California Bearing Ratio (CBR). Detailed laboratory test results are attached and summaries are presented below in the Tables 2 and 3.

Test Pit No	Depth (m)	Exchangeable Sodium Percentage (%)	EC (μS/cm)	рН	Sulphate (mg/kg)
TP4	0.2-0.4	-	150	-	-
TP4	0.8-1.0	-	470	-	-
TP4	1.4-1.6	-	190	-	-
TP5	0.4-0.6	-	73	-	-
TP5	1.3-1.5	-	210	-	-
TP5	2.3-2.5	-	690	-	-
TP6	1.6-1.8	-	350	-	-
TP7	0.3-0.5	14.1	420	5.4	150
TP7	1.1-1.3	21.1	620	4.9	190
TP8	0.5-0.7	-	95	-	-
TP8	1.0-1.7	-	390	-	-
TP9	0.4-0.6	15.2	170	5.3	130

Table 2 – Results of Soil Chemical Properties Tests

Test Pit No	Depth (m)	Exchangeable Sodium Percentage (%)	EC (μS/cm)	рН	Sulphate (mg/kg)
TP9	1.3-1.5	16.4	350	5.1	170
TP9	1.6-1.7	22.6	730	4.9	390
TP10	0.2-0.4	-	43	-	-
TP10	1.8-2.0	-	230	-	-
TP11	0.5-0.7	-	160	-	-
TP11	1.8-2.0	20.8	340	5.3	300
TP12	0.4-0.6	16.8	120	5.6	96

Table	3 –	Results	of Soil	Physical	Properties	Tests
i ubic	0	resound	01 001	i nyoloui	roportioo	10010

Test Pit No	Depth (m)	Liquid Limit (%)	Plasticity Index (%)	Linear Shrinkage (%)	Optimum Moisture Content (%)	Maximum Dry Density (t/m ³)	California Bearing Ratio (%)
TP6	0.8-1.0	57.0	35.0	14.0	-	-	-
TP10	0.5-0.9	62.0	38.0	16.0	25.3	1.56	4.5
TP12	1.2-1.4	67.0	39.0	14.0	-	-	-

9.0 Discussion and Recommendations

9.1 Soil Erodibility

Erosion is the detachment and movement of soil materials. The process might be natural or accelerated by human activity. Susceptibility of soils to erosion depends on dispersibility of soils, which is generally assessed by conducting physical properties tests to determine Emerson Class, Dispersion Percent and Pinhole Class and chemical property tests to determine sodicity in terms of Exchangeable Sodium Percentage (ESP) and Sodium Absorption Ratio (SAR). It should be noted that assessment of soil dispersibility based on the above tests might differ from each other.

For the current investigation only Exchangeable Sodium Percentage (ESP) for representative samples were determined. Soils with ESP values of more than 5.0% are considered sodic and those with ESP more than 15.0% are considered highly sodic (Reference 1).

ESP values for 7 representative soil samples are presented in Table 2 which indicates that the ESP values for representative soil samples vary from 14.1% to 22.6%. Six of seven samples have ESP value of more than 15.0%. Therefore, it is our assessment that the soils across the proposed development site are dispersive and therefore susceptible to excessive erosion. Therefore, we recommend that the earthworks for the proposed cemetery expansion works are carried out in accordance with a Soil Management Plan (SMP) in order to minimise the risk of excessive erosion.

9.2 Soil Salinity

Salinity refers to the presence of excess salt in the environment, either in soil or water. Soil salinity is generally assessed by measuring Electrical Conductivity (EC) of a soil sample made up of 1:5 soil water suspension. Thus determined Electrical Conductivity (EC) is multiplied by a factor varying from 6 to 17, based on the texture of the soil sample, to obtain Equivalent/corrected Electrical Conductivity designated as EC_e (Reference 2). Alternatively, EC_e may also be directly measured in soil saturation extract. The criteria for assessment of soil salinity classes are shown in the following Table 4 (Reference 2).

Classification	EC _e (dS/m)	Comments
Non-saline	<2	Salinity effects mostly negligible
Slightly saline	2 – 4	Yields of very sensitive crops may be affected
Moderately saline	4 – 8	Yields of many crops affected
Very saline	8 – 16	Only tolerant crops yield satisfactorily
Highly saline	>16	Only a few tolerant crops yield satisfactorily

Table 4 –	Soil	Salinity	Classes
	001	Cumity	0100000

A multiplication factor of 8 to 10 is assessed to be appropriate for clayey soils encountered across the site. For a factor of 10, the Equivalent Electrical Conductivity (ECe) values for 19 representative soil samples summarised in Table 2 are estimated to be in range 0.43dS/m to 7.3dS/m. Only 5 of 19 samples have ECe of more than 4.0dS/m and these samples are predominantly from depths exceeding 1.0m from existing ground surface. Although localised saline soils may be encountered at shallow depths, it is our assessment that the soils up to depth of 1.0m may be considered to be non-saline soils. However, soils likely to be disturbed and excavated at depths exceeding 1.0m should be considered saline. Therefore, earthworks for the proposed cemetery expansion works should be carried out in accordance with a Saline Soil Management Plan (SSMP) to reduce and manage impacts from the saline soils on the proposed expansion works. Recommended SSMP that also addresses issues with dispersive soils in presented below in this report.

9.3 Exposure Classification

Australian Standard AS2870 (Reference 3) provides guidelines to assess soil aggressivity and exposure classification for saline and sulphate soils. Table 5 below provides salinity and exposure classification based on Electrical Conductivity (EC_e) and Table 6 provides exposure classification for sulphate soils.

Electrical Conductivity, EC _e (dS/m)	Exposure Classification	Salinity Classification
<2	A1	Non-saline
2-4	A1	Slightly saline
4 – 8	A2	Moderately saline
8 – 16	B1	Very saline
>16	B2	Highly saline

Table 5 – Exposure Classifications for Saline Soils

Table 6 – Exposure Classifications for Sulphate Soils

Sulphate	expressed as SO ₃	nU	Exposure Cla	assification*
In Soil (ppm)	In Groundwater (ppm)	рН	Soil Condition A	Soil Condition B
<5000	<1000	>5.5	A2	A1
5000-10000	1000-3000	4.5-5.5	B1	A2
10000-20000	3000-10000	4.0-4.5	B2	B1
>20000	>10000	<4.0	C2	B2

Approximately 100ppm of $SO_4 = 80ppm$ of SO_3

*Soil Condition A = high permeability soils (e.g. sands and gravels) which are below groundwater

*Soil Condition B = low permeability soils (e.g. silts and clays) and all soils above groundwater

Soil across the site is clayey in nature and therefore appropriate site condition for predominant soils across the site is assessed to be "Condition B". Therefore, based on laboratory test results presented in Table 2 and guidelines on exposure classifications presented in Tables 5 and 6, it is our assessment that the foundation soils across the site belong to Exposure Classifications A1 to A2 in accordance with Australian Standard AS2870 (Reference 3). Therefore, we recommend use of construction materials and technique that are appropriate for Exposure Classifications A2.

9.4 Excavation Condition

Although details of the earthworks required for the proposed cemetery expansion works are yet to be finalised, the depth to excavation is anticipated to be up to about 2.1m deep. Therefore, materials to be excavated will comprise topsoil, residual soils and bedrock shale. However, excavation into bedrock will be localised and depth of excavation into bedrock, where required, is anticipated to be 1.0m or less. Bedrock up to depth of 2.1m is assessed to be extremely weathered shale of very low to medium strength. Therefore, it is our assessment that the proposed excavation up to depth of 2.1m can be achieved using conventional earthmoving equipment such as excavators and dozers.

Ground vibration during excavation is generally represented by maximum peak particle velocity. Houses and low rise residential buildings can generally tolerate ground vibration of about 5.0mm/s to 10.0mm/s. We anticipate excavation to depth of 2.1m will result in ground vibrations that are likely to be less than 10.0mm/s. Therefore, it is our assessment that the vibration during excavation for proposed development work is likely to be within tolerable limits for stability of existing structures in the vicinity of the site. However, especial care should be taken to reduce the vibrations to less than 2.0mm/s if any of existing structures within and in the vicinity of the site are heritage listed.

Observations during this investigation indicated that the depth to groundwater level is in excess of 2.5m. Although fluctuations in the level of groundwater might occur due to variations in rainfall and/or other factors not evident during field works, we do not anticipate any groundwater inflow during excavation for proposed development. Minor seepage may be managed by a conventional sump and pump method.

9.5 Fill Placement

We consider site preparation for the proposed development works will require some fill placement. The following procedures are recommended for placement of controlled fill, where required.

- Strip existing topsoil and fill and stockpile separately for possible future uses. Excess materials should be disposed off the site. Contaminated fill should be treated in accordance with recommendation from environmental consultant.
- Undertake proof rolling (using an 8 to 10 tonnes roller) of the exposed residual soils to detect potentially weak spots (ground heave). Excavate areas of localised heaving to a depth of about 300mm and replace with granular fill, compacted as described below.
- Undertake proof rolling of soft spots backfilled with granular fill, as described above. If the backfilled area shows movement during proof rolling, this office should be contacted for further recommendations.

- Place suitable fill materials on proof rolled residual soils. In general, controlled fill should be placed in horizontal layers of 200mm to 250mm maximum loose thickness and compacted to a Minimum Dry Density Ratio (MDDR) of 95% Standard, at moisture content within 2% of Optimum Moisture Content (OMC). However, upper 500mm of controlled fill forming subgrade for roads should be compacted to a MDDR of 100% Standard, at moisture content within 2% of OMC. Controlled fill should preferably comprise non-reactive fill (e.g. crushed sandstone) with a maximum particle size not exceeding 75mm, or low plasticity clay. The fill materials, residual soils and bedrock obtained from excavations within the site may be selectively used in controlled fill after environmental validation, removing deleterious materials, crushing to sizes finer than 75mm and moisture conditioning. This means that the residual soils and bedrock obtained from excavations within the site may be used in controlled fill even without being classified as VENM or ENM if uses of these materials are acceptable from environmental considerations.
- Fill placement should be supervised to ensure that material quality, layer thickness, testing frequency and compaction criteria conform to the specifications. We recommend "Level 2" or better supervision, in accordance with AS3798-2007 (Reference 4). It should be noted that a Geotechnical Inspection and Testing Authority will generally provide certification on the quality of the entire compacted fill only if Level 1 supervision and testing is carried out.

9.6 Batter Slopes and Retaining Structures

Site preparation works for the proposed cemetery expansion will involve some excavation and placement of some controlled fill. As indicated earlier the excavation depths are not known at this stage but anticipated to be less than about 2.0m in depth. Cut and fill slopes during and after development works should be battered for stability or retained by engineered retaining structures. We anticipate that the cut and fill slopes for the proposed development will be appropriately battered for short term and long term stability. We recommend the following batter slopes:

- For short term stability = 1 vertical to 1 horizontal
- For long term stability = 1 vertical to 2.5 horizontal

It is recommended that batter slope surfaces are protected from erosion by proper grassing. The crest of bettered slope should also be provided with drainage to divert surface water to stormwater disposal system in a controlled manner.

If cut and fill slopes steeper than those recommended above are required for whatever reason, the slopes should be retained with engineered retaining structures. Appropriate retaining structures for the proposed development will comprise gravity walls or cantilever walls. Earth pressure distribution on such retaining structures may be assumed to be triangular in shape and estimated as follows:

$$p_h = \gamma k H$$

Where,

- p_h = Horizontal pressure (kN/m²)
- γ = Unit weight of materials retained (18.5kN/m³)
- k = Coefficient of earth pressure $(k_a \text{ or } k_o)$
- H = Retained height (m)

For design of flexible retaining structures where some lateral movement is acceptable, an active earth pressure coefficient (k_a) value of 0.35 is recommended. If it is critical to limit the horizontal deformation of retaining structure, use of an earth pressure coefficient at rest (k_0) value of 0.55 is recommended. The above coefficients are based on the assumptions that the ground level behind the retaining structure is horizontal and the retained material is effectively drained. Additional earth pressures resulting from surcharge load (buildings, infrastructures, etc) on retained materials and groundwater pressure, if any, should also be allowed for in design of retaining structures.

9.7 Impacts from Groundwater

Test pits excavated to depths of 2.5m from existing ground did not encounter groundwater level or seepage. Although fluctuations in the level of groundwater might occur due to variations in rainfall and/or other factors not evident during drilling, it is our assessment that the depth of groundwater across the site is more than 2.5m from existing ground surface.

We anticipate that the depths of excavations during proposed cemetery extension works as well as during the use of the site as future cemetery will be less than 2.5m from existing ground surface. Therefore, groundwater is unlikely to adversely impact on the proposed cemetery expansion works. However, we do recommend that the appropriately designed surface drainages are provided to ensure that the surface water is diverted to stormwater system in a controlled manner without impacting on the cemetery. In addition surface drainage should also be provided to divert surface waterway from the cemetery.

9.8 Footings

If cut and fill slopes are retained with engineered retaining structures, we anticipate appropriate footings would comprise shallow footing (pad and strip footings) founded on controlled fill and residual soils or deep footings (screw piles and bored piles) founded in bedrock. Footings for any other structures within the proposed development site may also be founded on controlled fill, residual soils or bedrock. Recommended allowable bearing pressures for design of footings are presented below in Table 7.

Founding Material	Indicative FoundingAllowable BearingAllowableDepth (m)Pressure (kPa)Adhesio					
Controlled Fill	Not Applicable	100.0	Ignore			
Residual Soil	0.5 to 2.0	125.0	Ignore			
Bedrock -Shale	1.5m to >2.5	700.0	70.0			

Table 7 – Recommended Allowable Bearing Pressures

The indicative founding depths presented in Table 7 are from existing ground surface during current geotechnical investigation. However, after completion of earthworks involving cut and fill, these depths may change.

As depths to different foundation materials could vary across the site, the founding depths of footings to be constructed will also vary. The founding level at a specific location will have to be confirmed by an experienced Geotechnical Engineer on the basis of assessment made during footing excavation or pier hole drilling.

For footings founded on controlled fill and residual soils the total settlement under the recommended allowable bearing pressures is estimated to be about 2.5% of the minimum dimension of footings.

However, for footings founded in bedrock the total settlement under the recommended allowable bearing pressures is estimated to be about 1.0% of pier diameter. The differential settlements are estimated to be about half the estimated total settlements.

9.9 Preliminary Pavement Design

Design of road and car park pavement depends on strength of subgrade, which is usually represented by CBR value, and traffic load. Final pavement design should be based on results of laboratory tests on samples recovered after subgrade preparation is completed. However, this report provides preliminary pavement design based on the following assumptions:

- Road pavement will be constructed on residual soils and/or controlled fill subgrade and
- Residual soils obtained from excavations within the site or similar materials will be used as controlled fill materials for subgrade. Therefore, results of laboratory tests on residual soil samples can be considered to be indicative of final subgrade materials.

Table 3 indicates that the CBR value for samples recovered from residual soils vary from 1.5% to 4.5%. CBR value of less than 3.0% generally indicates very weak subgrade material. As residual soils are assessed to be reactive in nature, subgrade materials with CBR values of less than 3.0% could be widespread across the site. Therefore, we recommend the following options to improve subgrade strength:

- Strip upper 500mm of subgrade and replace with crushed sandstone compacted to dry density ratio of at least 100% standard.
- Blend upper 400mm of residual subgrade with 3.0% of lime by weight and compact to dry density ratio of at least 100% standard within moisture content within 2% of optimum moisture content.

We recommend an indicative CBR of 3.0% for design of pavement after subgrade is improved using one of the above options. However, if imported fill materials are used as subgrade for the road additional sampling and testing should be carried out to assess CBR of imported fill forming actual subgrade so that an appropriate pavement could be designed.

A traffic load of 2.0 x 10^5 Equivalent Standard Axles (ESA) is recommended for design of flexible pavement for local streets. Therefore, appropriate traffic load for design of road pavement within the proposed development site is assumed to be 2.0 x 10^5 ESA.

For recommended indicative design subgrade CBR value of 3.0% and traffic loading of 2.0×10^5 ESA the recommended flexible pavement design in accordance with Austroads Guideline (Reference 5) is presented in the following Table 8.

Pavement Materials	Thickness
Asphaltic Concrete	50mm
Basecourse Material (DGB20)	150mm
Sub-base Material (DGS40)	210mm

Table 8 – Recommended Flexible Pavement Design

Recommended pavement thicknesses presented in Table 8 are valid only if the subgrade and pavement materials are compacted to the following Minimum Dry Density Ratios.

Basecourse	98% Modified
Sub-basecourse	98% Modified
Subgrade	100% Standard

The pavement design assumes provision of adequate surface and sub-surface drainage. Recommended pavement design is valid for assumed traffic loading and an indicative subgrade CBR value, which should be determined after completion of subgrade preparation. Furthermore, it is possible that the subgrade improvement in accordance with one of two options recommended in this report may not be required if CBR values of residual soils exposed at the final subgrade level after subgrade preparation is 3.0% or more.

10.0 Saline Soil Management Plan (SSMP)

Soils likely to be disturbed during the proposed development works are anticipated to be dispersive, with a high risk of erosion, as well as saline at depths exceeding 1.0m. Therefore, both soil dispersibility and salinity are of concern for earthworks during proposed cemetery expansion works. Furthermore, given the problems associated with erosion and soil salinity in Western Sydney, we recommend that some soil management principals are implemented during the proposed earthworks, as preventative measures in dealing with possible erosion and salinity problems.

The only effective way to remove salts from soils to reduce the salinity risk to a tolerable level is by leaching/flushing, which is accomplished by allowing fresh water to infiltrate through saline soils so that salty water is collected and discharged out of the site using an appropriate drainage system. However, leaching is not considered practical and appropriate for the proposed development site. Therefore, earthworks across the site should be carried out in accordance with an appropriate Saline Soil Management Plan (SSMP) and the objectives of the SSMP should include the following:

- Minimise erosion and sediment loss before, during and after construction.
- Minimise water pollution due to erosion, siltation and sedimentation.
- Maximise the re-use of onsite materials.
- Reduce and manage salinity within the site so that impacts on possible future structures and vegetation in the vicinity of the site are minimised and acceptable.
- Ensure that the natural flow of surface and groundwater is maintained as much as possible.
- Use building materials and technique appropriate for salinity conditions or aggressivity.

We recommended the following as part of the SSMP:

- Erosion and Sediment Control Plans must be developed and implemented by the earthworks contractors, in accordance with recommendations provided by the NSW Department of Housing (Reference 6). All sediment and erosion controls proposed by the Erosion and Sediment Control Plan are to be installed prior to commencement of any construction works.
- Map the current primary drainage lines and incorporate these into the surface water drainage system for the subdivision. Do not fill in or block these drainage lines unless appropriate alternative drainage is provided.
- Develop the best use of the existing topography in order to minimise cut and fill operations. Where cut are required limit to depth of 1.0m, if possible.
- Retaining walls for cut and fill slopes should be provided with adequate and appropriate drainage. Blacktown City Council

- If fill is to be placed in low lying areas, a drainage layer should be placed beneath the fill to prevent groundwater rise and the drainage layer should be drained off the site.
- Finished ground surface should be provided with adequate fall to allow run-off of water and prevent water ponding, waterlogging and infiltration of rainwater.
- Ensure that construction activities do not affect the natural flow of groundwater. Where groundwater is intercepted during development works/excavation, the flow should be diverted to stormwater drains or creeks by providing appropriate surface and sub-surface drainage.
- Reduce groundwater recharge through appropriate land use and land management practices. This can be achieved by minimising deep infiltration and through-flow and maximising vegetation cover, planting of deep rooted trees and use of salt tolerant plants.
- Utilise native and deep-rooted plants to minimise soil erosion. Where vegetation cover is not adequate to control erosion, improve soil resistance to erosion by stabilising dispersive soils with hydrated lime and gypsum. Exact proportions of lime and gypsum to be used can be determined on the basis of laboratory testing, but for preliminary planning purposes we suggest about 3% to 5% of lime and gypsum.
- On cut and fill batters provide a secured turf overlay or shotcreting, again to guard against erosion. Construction of a V-drain behind the crest of all slopes is also recommended to divert water away from the slope.
- Select construction materials and techniques suitable for assessed exposure classification.

11.0 Conclusions

Results of this investigation indicate that the geotechnical conditions across the site do not impose any constraint on proposed cemetery expansion. However, earthworks and design and construction of roads and any other structures should be carried out in accordance with recommendations provided in this report.

Assessments and recommendations presented in this report are based on site observation and information from only limited number of test pits and soil samples. Although we believe that the subsurface profile presented in this report is indicative of the general profile across the site, it is possible that the sub-surface profile across the site could differ from that encountered in the boreholes. Likewise, comments on depth to groundwater level are based on observation during a short period of time. We recommend that this company is contacted for further advice if actual site conditions and depth to groundwater level encountered during basement excavation differ from those presented in this report.

References

- 1. Fell, R., MacGregor, P and Stapledon, D. Geotechnical Engineering of Embankment Dams, 1992.
- 2. Lillicrap, A and McGhie, S. Site Investigation for Urban Salinity, Department of Land and Water Conservation, 2002.
- 3. Australian Standard AS2786-2011, Residential Slabs and Footings, 2011.
- 4. Australian Standard AS3798-2007 Guidelines on Earthworks for Commercial and Residential Developments, 2007.
- 5. Austroads, Pavement Design for Light Traffic, A Supplement to Austroads Pavement Design Guide, AP-T36/06, 2006.
- 6. NSW Department of Housing: Managing Urban Stormwater, Soils and Construction, 1998.

ATTACHMENTS

Drawing No 14160/1-AA1R1 Test Pit Location Plan

Excavation Logs

Laboratory Test Results

		nt : ect : ation	:	Prop St B	posed	Cer	ew Pla	y Extension Pit No: TP4				
	-	-	-	-	nd mo			5 Tonne Excavator R.L. surface :				
	Exca	avatio	on d	imen	sions	:		.6 m long 0.4 m wide datum :				
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION Notestical production Remarks and additional observations soil type, plasticity or particle characteristic, colour, secondary and minor components. Image: size of the size of th				
					0	****		TOPSOIL: Silty Clay, low to medium plasticity, brown, trace of root fibres				
			DS				CI-CH	Silty CLAY, medium to high plasticity, orange- M≤PL F-St Residual Residual	_			
					0.5				_			
			DS		_ 1		CI-CH	Silty CLAY, medium to high plasticity, grey, with M≤PL St ironstone fragments	_			
					-				_			
DRY			DS				CI-CH	Shaley CLAY, medium to high plasticity, grey- brown, with shale fragments				
					_			Test pit No 4 terminated at 1.6m due to refusal on shale bedrock	_			
					2				_			
									_			
					_	-			_			
					2.5 —				_			
					_	-			_			
					3	-			_			
					 3.5				_			
					_				_			
					4				_			
					-				_			
									_			
					4.5				_			
					_				_			

GEOTECHNIQUE PTY LTD

engineering log - excavation

	Loca	ect : ation		Prop St B Pros	bosed arthol spect	Cer ome	ity Council Job No : 14160/1 emetery Extension Pit No : TP5 Date : 13/03/2018 Logged/Checked by: JH el: 5 Tonne Excavator R.L. surface :						
	-	-	-	-	nd mo sions		: 1.	5 Tonne Excavator 6 m long 0.4	m wide		R.L. sı datum		:
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTI soil type, plasticity or particle c colour, secondary and minor c	haracteristic,	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
					0			TOPSOIL: Silty Clay, low to media brown, trace of root fibres	um plasticity,				_
					_		CI-CH	Silty CLAY, medium to high plasti brown	city, orange-	M≤PL	F-St		Residual
			DS		0.5								
					_								_
					-								
											-		-
			DS				CI-CH	Silty CLAY, medium to high plasti ironstone fragments	city, grey, with	M≤PL	St		-
					1.5								
					_								-
					2								
					_								-
DRY			DS		_								-
					-2.5			Test pit No 5 terminated at 2.5m					
					_								-
					3	-							
					_								
					3.5								
													-
					4								
													-
					4.5								
													-
													_

	Loca	ect : ation		Prop St B Pros	bosed arthol spect	Cer ome	Job No : 14160/1 emetery Extension Pit No : TP6 new Place Date : 13/03/2018 Logged/Checked by: JH el: 5 Tonne Excavator R.L. surface :					
	-	-	-	-	nd mo sions			5 Tonne Excavator .6 m long 0.4 m wide		R.L. sı datum		:
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
					0			TOPSOIL: Silty Clay, low to medium plasticity, brown, trace of root fibres				_
							CI-CH	Silty CLAY, medium to high plasticity, orange- brown	M≤PL	F-St		Residual
			DS		- 1							_
					- - - 1.5		CI-CH	Shaley CLAY, medium to high plasticity, grey- brown, with shale fragments	M≤PL	St		
			DS		_							-
DRY					2 							
								Test pit No 6 terminated at 2.5m				-
						-						
					-							_
					3.5 —							
					-							-
					4							
												-
					- - -							
					4.5 — – –	_						-

	Loca	ect : ation		Prop St B Pros	bosed Barthol spect	I Cemetery Extension Pit Iomew Place Da Log			ob No: 14160/1 it No: TP7 ate: 13/03/2018 ogged/Checked by: JH			
	-	-	-	-	nd mo sions			5 Tonne Excavator .6 m long 0.4 m wide		R.L. รเ datum	urface :	:
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
					0	*****		TOPSOIL: Silty Clay, low to medium plasticity, brown, trace of root fibres				
			DS		_		CI-CH	Silty CLAY, medium to high plasticity, orange- brown	M≤PL	F-St		Residual
				-	0.5 —							
					-		CI-CH	Shaley CLAY, medium to high plasticity, brown	- M≤PL	St		-
					- 1		0.0	grey, with shale fragments				
			DS		_							_
												_
					-							-
					-							-
					2 —							
					_							
DRY					- <u>2.5</u>			Test pit No 7 terminated at 2.5m				
					_							-
					3	_						_
												-
					-							-
					3.5 —							
					_							-
					4							
					-							-
					4.5							
												-
					_							

	Loca	ect : ation		Prop St B Pros	bosed arthol spect	osed Cemetery Extension Pit artholomew Place Da pect Lo			ob No: 14160/1 Pit No: TP8 Date: 13/03/2018 ogged/Checked by: JH			
		-	-	-	nd mo sions			5 Tonne Excavator .6 m long 0.4 m wide		R.L. sı datum	urface :	:
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
					0			TOPSOIL: Silty Clay, low to medium plasticity, brown, trace of root fibres				
			DS		 0.5 		CI-CH	Silty CLAY, medium to high plasticity, orange- brown	M≤PL	F-St		Residual
					1 — - - 1.5 —		CI-CH	Silty CLAY, medium to high plasticity, brown- grey, with shale fragments	M≤PL	St		
			DS		 2							
DRY												
~					-2.5 			Test pit No 8 terminated at 2.5m				

	Loca	ect : ation		Prop St B Pros	bosed arthol spect	d Cemetery Extension P plomew Place D			Job No: 14160/1 Pit No: TP9 Date: 13/03/2018 _ogged/Checked by: JH			
	-	-	-	-	nd mo sions		: 1	5 Tonne Excavator 6 m long 0.4 m wide		R.L. sı datum	urface	:
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
6	e	<u> </u>	້ອ	te <u>fi</u>	<u>= 0</u>	16	CI	TOPSOIL: Silty Clay, low to medium plasticity, brown, trace of root fibres	Εŏ	ŭŏ	ĔĞ¥	
					-		CI-CH	Silty CLAY, medium to high plasticity, orange- brown	M≤PL	F-St		Residual
			DS		0.5 — 							
			DS		 1		CI-CH	Shaley CLAY, medium to high plasticity, brown- grey, with shale fragments	M≤PL	St-VSt		
					-							-
DRY			DS		1.5			SHALE, brown-grey, moderately weathered,				Bedrock
DRY			DS					SHALE, brown-grey, moderately weathered, medium strength Test pit No 9 terminated at 1.7m due to refusal on shale				Bedrock

	Loca	ect : ation		Prop St B Pros	bosed arthol spect	Cer ome	ew Pla	Y Extension Pit No : TP10 ace Date : 13/03/2018 Logged/Checked by: JH	
	-	-	-	-	nd mo			5 Tonne Excavator R.L. surface :	
	EXC		on a	Imen	sions			.6 m long 0.4 m wide datum :	
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION Xet and additional additional observations soil type, plasticity or particle characteristic, colour, secondary and minor components. Image: Colour and additional observations Image: Colour and additional observations	
					0			TOPSOIL: Silty Clay, low to medium plasticity, brown, trace of root fibres	_
			DS		-		CI-CH	Silty CLAY, medium to high plasticity, orange- M≤PL F-St Residual	_
			DB		0.5 — 				_
					 1		CI-CH	Shaley CLAY, medium to high plasticity, brown- M⊴PL St-VSt grey, with shale fragments	_
					-				_
					1.5				
DRY			DS		- - -				_
					-	-		Test pit No 10 terminated at 2.0m due to refusal on shale bedrock	
					2.5	-			
					-	-			_
					3 — –	-			_
					-				_
					3.5 — –	-			_
					4	-			
					-				_
					4.5 — _				
					_	-			

	Loca	ect : ation		Prop St B Pros	bosed arthol spect	Cer ome	ty Council Job No : 14160/1 emetery Extension Pit No : TP11 ew Place Date : 13/03/2018 Logged/Checked by: JH					
	-	-	-	-	nd mo sions			5 Tonne Excavator .6 m long 0.4 m wide		R.L. รเ datum	urface :	:
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
					0			TOPSOIL: Silty Clay, low to medium plasticity, brown, trace of root fibres				
			DS		 0.5 		CI-CH	Silty CLAY, medium to high plasticity, orange- brown	M≤PL	F-St		Residual
					1 — - - - 1.5 — - -		CI-CH	Shaley CLAY, medium to high plasticity, grey- brown, with shale fragments	M≤PL	St-VSt		
DRY			DS		2 — - - - - - 2.5			Test pit No 11 terminated at 2.5m				
~					-2.5 			Test pit No 11 terminated at 2.5m				

	Loca	ect : ation		Prop St B Pros	bosed arthol spect	Cer ome	netery w Pla	CouncilJob No : 14160/1etery ExtensionPit No : TP12v PlaceDate : 13/03/2018Logged/Checked by: JH					
	-	-	-	-	nd mo sions			5 Tonne Excavator 6 m long 0.4 i	m wide		R.L. sι datum	urface :	:
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle chara colour, secondary and minor comp	cteristic, onents.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
					0			TOPSOIL: Silty Clay, low to medium p brown, trace of root fibres	lasticity,				_
			DS		 0.5		CI-CH	Silty CLAY, medium to high plasticity, brown	orange-	M≤PL	F-St		Residual
					- - 1		CI-CH	Shaley CLAY, medium to high plasticit grey, with shale fragments	y, brown-	M⊴PL	St-VSt		
			DS		- - 1.5								-
					2								-
DRY					- 25								_
~					- 2.5 3 3.5 			Test pit No 12 terminated at 2.5m					
					4.5 — _ _	-							

KEY TO SYMBOLS

Symbol Description

Strata symbols

Topsoil

Silty Clay medium to high plasticity

Shaley Clay medium to high plasticity

Shale

Descriptions of various line types (solid, dotted, etc.)

- Profile change
- Gradual profile change _ _ _

Notes:

- 1. Exploratory borings were drilled between 13/03/2018 and 13/03/2018 using a 50, 100 and 125mm diameter continuous flight power auger.
- 2. These logs are subject to the limitations, conclusions and recommendations in this report.
- 3. Results of tests conducted on samples recovered are reported on the logs.

Log Column	Symbol/Value	Description
Drilling Method	V-bit	Hardened steel 'V' shaped bit attached to auger
0	TC-bit	Tungsten Carbide bit attached to auger
	RR	Tricone (Rock Roller) bit
	DB	Drag bit
	BB	Blade bit
Groundwater	Dry	Groundwater not encountered to the drilled or auger refusal depth
		Groundwater level at depths shown on log
		Groundwater seepage at depths shown on log
Environment Sample	GP	Glass bottle and plastic bag sample over depths shown on log
	G	Glass bottle sample over depths shown on log
PID Reading	100	Plastic bag sample over depths shown on log PID reading in ppm
Geotechnical Sample	DS	Disturbed Small bag sample over depths shown on log
	DB	Disturbed Bulk sample over depths shown on log
	U ₅₀	Undisturbed 50mm tube sample over depths shown on log
Field Test	N=10	Standard Penetration Test (SPT) 'N' value. Individual numbers indicate blows per
	3,5,5	150mm penetration.
	N=R	'R' represents refusal to penetration in hard/very dense soils or in cobbles or
	10,15/100	boulders.
	,	The first number represents10 blows for 150mm penetration whereas the second
		number represents 15 blows for 100mm penetration where SPT met refusal
	DCP/PSP 5	Dynamic Cone Penetration (DCP) or Perth Sand Penetrometer (PSP). Each
		number represents blows per 100mm penetration. 'R/10' represents refusal after
	6	10mm penetration in hard/very dense soils or in gravels or boulders.
	R/10	Tomm penetration in march very dense sons of in gravers of boulders.
Classification	GP	Poorly Graded GRAVEL
Classification	GW	Well graded GRAVEL
	GM	Silty GRAVEL
	GC	Clayey GRAVEL
	SP	Poorly graded SAND
	SW	Well graded SAND
	SM	Silty SAND
	SC	Clayey SAND
	ML	SILT / Sandy SILT / clayey SILT, low plasticity
	MI	SILT / Sandy SILT / clayey SILT, medium plasticity
	MH	SILT / Sandy SILT / clayey SILT, high plasticity
	CL	CLAY / Silty CLAY / Sandy CLAY / Gravelly CLAY, low plasticity
	CI	CLAY / Silty CLAY / Sandy CLAY / Gravelly CLAY, medium plasticity
Moisture Condition	СН	CLAY / Silty CLAY / Sandy CLAY / Gravelly CLAY, high plasticity
Cohesive soils	M <pl< td=""><td>Moisture content less than Plastic Limit</td></pl<>	Moisture content less than Plastic Limit
	M=PL	Moisture content equal to Plastic Limit
	M>PL	Moisture content to be greater than Plastic Limit
Cohesionless soils	D	Dry - Runs freely through hand
		Moist - Tends to cohere
	М	
	M W	Wet - Tends to cohere
Consistency	W	Wet - Tends to cohere Term Undrained shear strength, C _u (kPa) Hand Penetrometer (Qu)
Consistency Cohesive soils	W VS	Wet - Tends to cohere Term Undrained shear strength, C _u (kPa) Hand Penetrometer (Qu) Very Soft ≤12 <25
	W VS S	Wet - Tends to cohere Term Undrained shear strength, C _u (kPa) Hand Penetrometer (Qu) Very Soft ≤12 <25
	W VS S F	Wet - Tends to cohere Term Undrained shear strength, C _u (kPa) Hand Penetrometer (Qu) Very Soft ≤12 <25
	VS S F St	Wet - Tends to cohere Term Undrained shear strength, C _u (kPa) Hand Penetrometer (Qu) Very Soft ≤12 <25
	W VS S F St VSt	Wet - Tends to cohere Term Undrained shear strength, Cu (kPa) Hand Penetrometer (Qu) Very Soft ≤12 <25
Cohesive soils	VS S F St	Wet - Tends to cohere Term Undrained shear strength, C _u (kPa) Hand Penetrometer (Qu) Very Soft ≤12 <25
	W VS S F St VSt	Wet - Tends to cohere Term Undrained shear strength, C _u (kPa) Hand Penetrometer (Qu) Very Soft ≤12 <25
Cohesive soils Density Index	W VS S F St VSt H	Wet - Tends to cohere Term Undrained shear strength, C _u (kPa) Hand Penetrometer (Qu) Very Soft ≤12 <25
Cohesive soils Density Index	W VS S F St VSt H VL	Wet - Tends to cohere Term Undrained shear strength, C _u (kPa) Hand Penetrometer (Qu) Very Soft ≤12 <25
Cohesive soils Density Index	W VS S F St VSt H VL L M D	Wet - Tends to cohere Term Undrained shear strength, Cu (kPa) Hand Penetrometer (Qu) Very Soft ≤12 <25
Cohesive soils Density Index Cohesionless soils	W VS S F St VSt H VL L M D VD	Wet - Tends to cohere Term Undrained shear strength, Cu (kPa) Hand Penetrometer (Qu) Very Soft ≤12 <25
Cohesive soils Density Index	W VS S F St VSt H VL L M D VD VD 100	Wet - Tends to cohere Term Undrained shear strength, Cu (kPa) Hand Penetrometer (Qu) Very Soft <12
Cohesive soils Density Index Cohesionless soils Hand Penetrometer	W VS S F St VSt H VL L M D VD	Wet - Tends to cohere Term Undrained shear strength, Cu (kPa) Hand Penetrometer (Qu) Very Soft <12
Cohesive soils Density Index Cohesionless soils	W VS S F St VSt H VL L L M D VD 100 200	$\begin{tabular}{ c c c c } \hline Wet & - & Tends to cohere \\ \hline Term & Undrained shear strength, C_u (kPa) & Hand Penetrometer (Qu) \\ \hline Very Soft & $12 & 25 \\ $Soft & $25 & 50 - $100 \\ $Stiff & $$25 & 50 - $100 \\ $Stiff & $$50 & 100 & 100 - 200 \\ \hline Very Stiff & $$50 & 100 & 100 - 200 \\ \hline Very Stiff & $$200$ & $$2400$ \\ \hline Hard & $$200$ & $$2400$ \\ \hline Term & Density Index, I_D (\%) & SPT 'N' (blows/300mm) \\ \hline Very Loose & $$15$ & $$5$ \\ \hline Loose & $$15$ & $$5$ \\ \hline Loose & $$15$ & $$5$ & $$10$ \\ \hline Medium Dense & $$35$ & $$65$ & $$10$ \\ \hline Medium Dense & $$35$ & $$65$ & $$10$ \\ \hline Medium Dense & $$85$ & $$50$ \\ \hline Unconfined compressive strength (q_u) in kPa determined using pocket penetrometer, at depths shown on log \\ \hline Geological origin of soils \\ \hline \end{tabular}$
Cohesive soils Density Index Cohesionless soils Hand Penetrometer	W VS S F St VSt H VL L M D VD VD 100 200 Residual	$\begin{tabular}{ c c c c } \hline Wet & - & Tends to cohere \\ \hline Term & Undrained shear strength, C_u (kPa) & Hand Penetrometer (Qu) \\ \hline Very Soft & $12 & 25 & $25 - 50$ \\ \hline Soft & $12 & 25 & $25 - 50$ \\ \hline Firm & $25 & 50 & 100 & $100 - 200$ \\ \hline Stiff & $50 & 100 & $100 - 200$ \\ \hline Very Stiff & $50 & 100 & $100 - 200$ \\ \hline Very Stiff & $50 & 100 & 200 & 2400 \\ \hline Hard & 200 & 2400 \\ \hline Term & Density Index, I_D (\%) & SPT 'N' (blows/300mm) \\ \hline Very Loose & 15 & 5 \\ \hline Loose & 15 & 5 \\ \hline Loose & 15 & 35 & 5 \\ \hline Medium Dense & 35 & 65 & 10 \\ \hline Medium Dense & 35 & 65 & 10 \\ \hline Medium Dense & 85 & 50 \\ \hline Unconfined compressive strength (q_u) in kPa determined using pocket \\ penetrometer, at depths shown on log \\ \hline Geological origin of soils \\ \hline Residual soils above bedrock \\ \hline \end{tabular}$
Cohesive soils Density Index Cohesionless soils Hand Penetrometer	W VS S F St VSt H VL L M D VD VD VD 100 200 Residual Alluvium	Wet - Tends to cohereTermUndrained shear strength, C_u (kPa)Hand Penetrometer (Qu)Very Soft ≤ 12 <25 Soft $>12 \leq 25$ $25 - 50$ Firm $>25 \leq 50$ $50 - 100$ Stiff $>50 \leq 100$ $100 - 200$ Very Stiff $>50 \leq 100$ $200 - 400$ Hard >200 >400 TermDensity Index, I_D (%)SPT 'N' (blows/300mm)Very Loose ≤ 15 ≤ 5 Loose $>15 \leq 35$ $>5 \leq 10$ Medium Dense $>35 \leq 65$ $>10 \leq 30$ Dense $>65 \leq 85$ $>30 \leq 50$ Unconfined compressive strength (qu) in kPa determined using pocket penetrometer, at depths shown on log $= 50$ Geological origin of soils Residual soils above bedrock River deposited Alluvial soils $= 50$
Cohesive soils Density Index Cohesionless soils Hand Penetrometer	W VS S F St VSt H VL L M D VD VD 100 200 Residual	$\begin{tabular}{ c c c c } \hline Wet & - & Tends to cohere \\ \hline Term & Undrained shear strength, C_u (kPa) & Hand Penetrometer (Qu) \\ \hline Very Soft & \leq 12 & <25 \\ \hline Soft & > 12 \leq 25 & 25 - 50 \\ \hline Firm & > 25 \leq 50 & 50 - 100 \\ \hline Stiff & >50 \leq 100 & 100 - 200 \\ \hline Very Stiff & >100 \leq 200 & 200 - 400 \\ \hline Hard & >200 & >400 \\ \hline Term & Density Index, I_D (\%) & SPT 'N' (blows/300mm) \\ \hline Very Loose & \leq 15 & \leq 5 \\ \hline Loose & >15 & \leq 35 & <10 \\ \hline Medium Dense & >35 \leq 65 & >10 & \leq 30 \\ \hline Dense & >65 & \leq 85 & >50 \\ \hline Unconfined compressive strength (q_u) in kPa determined using pocket \\ penetrometer, at depths shown on log \\ \hline Geological origin of soils \\ Residual soils above bedrock \\ \hline \end{tabular}$

GEOTECHNIQUE PTY LTD

AS1726 – Unified Soil Classification System

Major Divisions		Particle size (mm)	Group Symbol	Typical Names	Field Ident	ifications Sand a	-				Laboratory classific	ation	
	BOULDERS	200							% (2) < 0.075mm	Plasticity of Fine Fraction	$C_u = D_{60}/D_{10}$	$C_c = (D_{30})^2 / (D_{10}D_{60})$	Notes
	COBBLES	63						'su					
		Coarse 20	GW	Well-graded gravels, gravel-sand mixtures, little or no fines		rain size and subs te sizes, not enou o dry strength		or Divisions'	0-5	-	>4	between 1 and 3	1. Identify lines by the method given for fine grained soils
	GRAVELS (more than half of coarse fraction is		GP	Poorly graded gravels, gravel- sand mixtures, little or no fines, uniform gravels	some intermedia	one size or range o ate sizes missing, arse grains, no dry	not enough	the criteria given in 'Major	0-5	-	Fails to co	mply with above	granied sons
COARSE GRAINED SOILS	larger than 2.36mm)	Medium 6	GM	Silty gravels, gravel-sand-silt mixtures	'Dirty' materials zero to medium	with excess of no dry strength	n-plastic fines,	riteria giv	12-50	Below 'A' line or <i>l_p<4</i>	-	-	2. Borderline classifications occur when the
		Fine 2.36	GC	Clayey gravels, gravel-sand-clay mixtures	'Dirty' materials medium to high	with excess of pla dry strength	istic fines,	2			-	-	percentage of fines (fraction smaller than 0.075mm size) is
		Coarse 0.6	SW	Well-graded sands, gravelly sands, little or no fines		rain size and subs te sizes, not enou o dry strength		s according	0-5	-	>6	between 1 and 3	greater than 5% and less than 12%. Borderline classifications
	SANDS (more than half of	Medium 0.2	SP	Poorty graded sands and gravelly sands; little or no fines, uniform sands	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength				subject 0-5 - 12-50 Below 'A' line or lp<4		Fails to comply with above		require the use of dual symbols e.g. SP-SM, GW- GC
	coarse fraction is smaller than 2.36mm)		SM	Silty sands, sand-silt mixtures	'Dirty' materials zero to medium	with excess of no dry strength	n-plastic fines,	ification o	12-50	Below 'A' line or <i>l_p<</i> 4	-	-	
		Fine 0.075	SC	Clayey sand, sand-clay mixtures	'Dirty' materials medium to high	with excess of pla dry strength	astic fines,	for	12-50	Above 'A' line of <i>I_p></i> 7	-	-	-
		1 110 0.070	ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight	Dry Strength None to low	Dilatancy Quick to slow	Toughness None	sing 63mm		Below 'A' line			
	SILTS & CLAYS (liquid limit < 50%)		CL, CI	plasticity Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	Medium to high	None to very slow	Medium	of material passing	Ę	Above 'A' line	40		
FINE GRAINED			OL	Organic silts and organic silty clays of low plasticity	Low to medium	Slow	Low	tion of ma	sing 0.075	Below 'A' line	- tu 30	c	
SOILS (more than half of material less than 63mm is smaller than	SILTS & CLAYS (liquid limit > 50%)		МН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	Low to medium	Slow to none	Low to medium	the gradation	More than 50% passing 0.075mm	Below 'A' line	CL	CI NE	
0.075mm)			СН	Inorganic clays of medium to high plasticity, fat clays	High to very high	None	High	Use	Aore than	Above 'A' line			OH or
			ОН	Organic clays of medium to high plasticity, organic silts	Medium to high	None to very slow	Low to medium			Below 'A' line		OL ar ML	МН
	HIGHLY ORGANIC SOILS		Pt	Peat and highly organic soils	Identified by col generally by fibr	our, odour, spong ous texture	y feel and		Effervesc	es with H ₂ O ₂		20 30 40 50 Liquid Limit (W _L), perce	60 70 80 nt

Log Symbols & Abbreviations (Cored Borehole Log)

Log Column	Symbol	Description	
Core Size	NQ	Nominal Core Size (mm 47)
	NMLC	52	
Water Loss	HQ	63 Complete water loss	
		Complete water 1055	
		Partial water loss	
Weathering	FR	Fresh	Rock shows no sign of decomposition or staining
	SW	Slightly Weathered	Rock is slightly discoloured but shows little or no change of strength from fresh rock
	DW	Distinctly Weathered	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by ironstaining. Porosity may be increased by leaching, or may be decreased by deposition of weathering products in pores
	EW	ExtremelyWeathered	Rock is weathered to such an extent that it has 'soil' properties, i.e. it either disintegrate or can be remoulded, in water
	RS	Residual Soil	Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but soil has not been significantly transported
Strength	-		Point Load Strength Index (I _{s50} , MPa)
	EL	Extremely Low	≤0.03
	VL L	Very Low Low	>0.03 ≤0.1 >0.1 ≤0.3
	M	Medium	>0.3 ≤1
	н	High	>1 ≤3
	VH	Very High	>3 ≤10
	EH	Extremely High	>10
Defect Spacing		Description	Spacing (mm)
		Extremely closely space Very closely spaced	ed <20 20 to 60
		Closely spaced	60 to 200
		Medium spaced	200 to 600
		Widely spaced	600 to 2000
		Very widely spaced	2000 to 6000
		Extremely widely spaced	d >6000
Defect Description	_		
Туре	Bp	Bedding parting	
	Fp Jo	Foliation parting Joint	
	Sh	Sheared zone	
	Cs	Crushed seam	
	Ds	Decomposed seam	
	ls	Infilled seam	
Macro surface geometry	St	Stoppod	
Macro-surface geometry	Cu	Stepped Curved	
	Un	Undulating	
	lr	Irregular	
	PI	Planar	
Micro-surface geometry	Ro	Rough	
Micro Sundoo geometry	Sm	Smooth	
	SI	Slickensided	
	cn	clean	
O (
Coating or infilling	sn	stained	
Coating or infilling	sn vn cg	veneer coating	

Grain S	Size mm	Bedded rocks (mostly sedimentary)									
More than 20	20		ain Size scription				st 50% of	grains are of car	bonate	At least 50% of grains are of fine-grained volcanic rock	
	6	RUD	DACEOUS	CONGLOMERATE Rounded boulders, cobbles and gravel cemented in a finer matrix Breccia Irregular rock fragments in a finer matrix SANDSTONE Angular or rounded grains, commonly cemented by clay, calcite or iron minerals Quartzite Quartz grains and siliceous cement Arkose Many feldspar grains Greywacke			DLOMITE ed)	Calcirudite		Fragments of volcanic ejecta in a finer matrix Rounded grains AGGLOMERATE Angular grains VOLCANIC BRECCIA	SALINE ROCKS Halite Anhydrite
	0.6	ARENACEOUS	Coarse Medium Fine			-	LIMESTONE and DOLOMITE (undifferentiated)	Calcarenite		Cemented volcanic ash	Gypsum
	0.06 0.002 Less than 0.002	ARGII	LLACEOUS	Many rock chips MUDSTONE SHALE Fissile	SILTSTONE Mostly silt CLAYSTONE Mostly clay	Calcareous Mudstone		Calcisiltite Calcilutite	CHALK	Fine-grained TUFF	-
Amorpho crypto-cry	us or				Flint: occurs as hands of nodules in the chalk Chert: occurs as nodules and beds in limestone and calcareous sandstone					COAL LIGNITE	
				Granular cemented - except amorphous rocks							_
				SILICEOUS CALCAREOUS					SILICEOUS	CARBONACEOUS	
				SEDIMENTARY ROCKS Granular cemented rocks vary greatly in strength, some sandstones are stronger than many Igneous rocks. Bedding may not show in hand specimens and is best seen in outcrop. Only sedimentary rocks, and some metamorphic rocks derived from them, contain fossils Calcareous rocks contain calcite (calcium carbonate) which effervesces with dilute hydrochloric acid							

AS1726 – Identification of Sedimentary Rocks for Engineering Purposes

AS1726 – Identification of Metamorphic and Igneous Rocks for Engineering Purposes

liated rocks (mostly metamorphic)	Rocks with	Grain size (mm)					
		Grain size description	Pegmatite			Pyrosenite	More than 20
GNEISS	MARBLE					Peridorite	20
Well developed but often widely spaced foliation sometimes with schistose bands	QUARTZITE		GRANITE	Diorite	GABBRO		6
	Granulite	COARSE	phorphyritic and	are then described,			
Migmatite Irregularly foliated: mixed schists and gneisses	HORNFELS						2
SCHIST Well developed undulose foliation; generally much mica	Amphibolite		Micorgranite	Microdiorite			0.6
vi Se		MEDIUM			Dolerite		0.2
							0.06
PHYLLITE Slightly undulose foliation; sometimes 'spotted'			RHYOLITE	ANDESITE	DACALT		0.002
SLATE Well developed plane cleavage (foliation)		FINE			BASALI		Less than 0.002
Mylonite Found in fault zones, mainly in igneous and metamorphic areas			Obsidian	Volcanic glass			Amorphous or cryptocrystallin e
Ē			Pale<			>Dark	
	Mainly SILICEOUS		ACID Much quartz	INTERMEDIATE Some quartz	BASIC Little or no quartz	ULTRA BASIC	
Foliation in gneisses is best observed orphics are difficult to recognize exce d by contact metamorphism is describ ly somewhat stronger than the parent	d in outcrop. Non- pt by association. ed as 'hornfels' rock	Composed of	closely interlocking				
	GNEISS Well developed but often widely spaced foliation sometimes with schistose bands Migmatite Irregularly foliated: mixed schists and gneisses SCHIST Well developed undulose foliation; generally much mica PHYLLITE Slightly undulose foliation; sometimes 'spotted' SLATE Well developed plane cleavage (foliation) Mylonite Found in fault zones, mainly in igneous and metamorphic areas E IIC ROCKS phic rocks are distinguished by foliatio Foliation in gneisses is best observer orphics are difficult to recognize exce d by contact metamorphism is describ y somewhat stronger than the parent	GNEISS MARBLE Well developed but often widely spaced foliation sometimes with schistose bands QUARTZITE Migmatite Irregularly foliated: mixed schists and gneisses HORNFELS SCHIST Well developed undulose foliation; generally much mica Amphibolite PHYLLITE Sightly undulose foliation; sometimes 'spotted' Serpentine SLATE Well developed plane cleavage (foliation) Mignet Mylonite Found in fault zones, mainly in igneous and metamorphic areas Mainly SILICEOUS	GNEISS MARBLE QUARTZITE QUARTZITE Schistose bands Grainuite Migmatite Granulite Irregularly foliated: mixed schists HORNFELS Amphibolite HORNFELS SCHIST Amphibolite Well developed undulose foliation; generally much mica Serpentine PHYLLITE Sightly undulose foliation; sometimes 'spotted' SLATE Well developed plane cleavage (roliation) Mylonite FINE Foliation in gneisses is best observed in outcrop. Non- porphics are distinguished by foliation which may Foliation in gneisses is best observed in outcrop. Non- porphics are difficult to recengrize except by association. IIC ROCKS phic rocks are distinguished by foliation which may Foliation in gneisses is best observed in outcrop. Non- porphics are difficult to recengrize except by association. IGNEOUS RC IIC ROCKS Mainly somewhat stronger than the parent rock Mode of occu	GNEISS MARBLE Grain size description Pe GNEISS Well developed but often widely spaced foliation sometimes with schistose bands MARBLE GUARTZITE GRANITE Migmatite Granulite COARSE These rocks are phorphyritic and for example, as These rocks are phorphyritic and for example, as Migmatite HORNFELS Amphibolite Micorgranite SCHIST HORNFELS MEDIUM Micorgranite Well developed undulose foliation; generally much mica Serpentine MEDIUM Micorgranite SLATE Well developed plane cleavage (foliation; sometimes 'spotted' SLATE These rocks are phorphyritic and as porphyries Wolnite Found in fault zones, mainly in igneous and metamorphic areas Obsidian Obsidian E Mainly SLICEOUS ACID Much quartz IGNEOUS ROCKS Composed of closely interlocking Much quartz IIC ROCKS phic rocks are distinguished by foliation which may Foliation in gneisses is best observed in varcop. Nonon, d by contact metamorphism is described as 'hornfels' y somewhat stronger than the parent rock IGNEOUS ROCKS	GNEISS MARBLE Grain size description Pegmatite GNEISS Well developed but often widely spaced foliation sometimes with schistose bands QUARTZITE GRANITE Diorite Migmatite Granulite COARSE These rocks are sometimes phorphyritic and are then described, for example, as porphyritic granite Migmatite Irregularly foliated: mixed schists and gneises Amphibolite Micorgranite Microdiorite SCHIST HORNFELS Amphibolite Micorgranite Microdiorite Foliation; generally much mica Serpentine MEDIUM These rocks are sometimes phorphyritic and are then described as porphyries SLATE Well developed plane cleavage (foliation; sometimes 'spotted' Serpentine RHYOLITE ANDESITE SLATE Well developed an ecleavage (foliation); sometimes 'spotted' Obsidian Volcanic glass Wonite Mainly SILCEOUS ACID INTERMEDIATE FINE Mainly Some quartz Some quartz Composed of closely interlocking mineral grains. Stron Foliation in gneisses is best observed in outcrop. Non-rorphics are distinguished by foliation which may Foliation in gneisses is best observed in outcrop. Non-rorphic are affifticult to recogrize except by association. di yo concet meatmorphism'is described as hormfeis' y somewhat stron	GNEISS MARBLE Grain size Pegmatile GNEISS QUARTZITE Granuite GRANITE Diorite GABBRO Migmatite Granuite COARSE These rocks are sometimes GABBRO Migmatite Granuite COARSE These rocks are sometimes GABBRO Migmatite HORNFELS HORNFELS These rocks are sometimes Diorite GABBRO SCHIST Well developed undulose Amphibolite MEDIUM Micorgranite Microdiorite Dolerite SCHIST Well developed plane cleavage Amphibolite MEDIUM These rocks are sometimes Dolerite StATE Softwire FINE RHYOLITE ANDESITE BASALT Well developed plane cleavage Mainty SILCEOUS ACID NTERMEDIATE BASALT Whore for fourtine Superphyrite and are then described as porphyrite BASALT Dolerite BASALT Well developed plane cleavage ISILCEOUS Obsidian Volcanic glass BASALT Worite Superphyrite and are then described as porphyrites Some quartz BASIC Little or no quartz	CNEISS MARBLE Grain size Begmatite Pyrosenite Well developed but often widely spaced foliation sometimes with schistose bands QUARTZITE GRANITE Diorite GABBRO Migmatite tregularly foliated: mixed schists Granulite COARSE These rocks are sometimes phorphyritic and are then described, for example, as porphyritic granite GABBRO Peridorite Migmatite tregularly foliated: mixed schists HORNFELS Amphibolite Micorgranite Micorgranite Diorite Dolerite Dolerite SCHIST Well developed undulose foliation; sometimes spoted Amphibolite Micorgranite Micorgranite Dolerite Dolerite Staff Serpentine FINE RHYOLITE ANDESITE Dolerite Dolerite Staff Well developed plane cleavage (foliation; sometimes spoted) Obsidian Volcanic glass BASALT Mytorite FINE Obsidian Volcanic glass Environmental teor no quartz Dark Mytorite Some quartz Some quartz Some quartz Some quartz Conside quartz Dark Staff Microson and metamorphic areas GRENUE ACID Mich quartz

ABN 64 002 841 063

DYNAMIC CONE PENETRATION (DCP) TEST RESULTS

Hammer Weight 9kg Drop 510mm Rod Diameter 16mm

				F	Rod Diameter 16mm
CLIENT:	Blacktown City Co	uncil	Job No:	14160/1	
PROJECT:	ECT: Proposed Cemetery Expansion			JH	
LOCATION:	St Bartholomew Pl	ace, Prospect	Checked By:	JH	
			Date Tested:	13/3/18	
Test Procedure	e: AS1289 6.	3.2	DYNAN	IC CONE PENE	TROMETER
Test Number	TP4	TP6	TP7	TP8	TP10
Depth (mm)		Nur	nber of Blows per	100mm	
0 – 100	1	3	2	1	3
100 – 200	1	4	1	3	2
200 – 300	3	3	2	2	2
300 - 400	5	4	3	3	1
400 – 500	7	10	5	3	1
500 – 600	8	11	4	3	1
600 – 700	8	7	4	5	2
700 – 800	10	8	5	3	3
800 – 900	15	7	6	4	5
900 - 1000	8	4	7	5	10
1000 – 1100	6	4	6	3	6
1100 – 1200	8	7	8	3	15R
1200 – 1300	15R	9	7	2	
1300 – 1400		15R	8	2	
1400 – 1500			8	3	
1500 – 1600					
1600 – 1700					
1700 – 1800					
1800 – 1900					
1900 – 2000					
2000 – 2100					
2100 – 2200					
2200 - 2300					
2300 – 2400					
2400 – 2500					

ANALYTICAL REPORT

- CLIENT DETAILS	·	LABORATORY DE	TAILS
Contact	Indra Jworchan	Manager	Huong Crawford
Client	Geotechnique	Laboratory	SGS Alexandria Environmental
Address	P.O. Box 880 NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Email	indra.jworchan@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project	14160-1 St Bartholomew Place, Prospect	SGS Reference	SE176794 R0
Order Number	(Not specified)	Date Received	16/3/2018
Samples	26	Date Reported	23/3/2018

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Kamrul Ahsan Senior Chemist

hone

Shane McDermott Inorganic/Metals Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au

SE176794 R0

pH in soil (1:5) [AN101] Tested: 20/3/2018

pH	pH Units	0.1	7.3	6.6	5.4	4.9	5.3
PARAMETER	UOM	LOR	SE176794.001	SE176794.002	SE176794.015	SE176794.016	SE176794.019
			0.2-0.4	0.5-0.7	0.3-0.5	1.1-1.3	0.4-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			IFI	IFI	1177		159
			TP1	TP1	TP7	TP7	ТР9

			TP9	TP9	TP11	TP12
			SOIL	SOIL	SOIL	SOIL
			1.3-1.5	1.6-1.7	1.8-2.0	0.4-0.6
				15/3/2018	15/3/2018	
PARAMETER	UOM	LOR	SE176794.020	SE176794.021	SE176794.025	SE176794.026
рН	pH Units	0.1	5.1	4.9	5.3	5.6

SE176794 R0

Conductivity and TDS by Calculation - Soil [AN106] Tested: 20/3/2018

			TP1	TP1	TP2	TP2	TP2
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.4	0.5-0.7	0.4-0.6	1.0-1.2	1.4-1.5
							15/3/2018
PARAMETER	UOM	LOR	SE176794.001	SE176794.002	SE176794.003	SE176794.004	SE176794.005
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	37	46	120	270	300

			TP3	TP3	TP4	TP4	TP4
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.6-0.8	1.2-1.4	0.2-0.4	0.8-1.0	1.4-1.6
				15/3/2018	15/3/2018		
PARAMETER	UOM	LOR	SE176794.006	SE176794.007	SE176794.008	SE176794.009	SE176794.010
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	44	190	150	470	190

			TP5	TP5	TP5	TP6	TP7
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.4-0.6	1.3-1.5	2.3-2.5	1.6-1.8	0.3-0.5
							15/3/2018
PARAMETER	UOM	LOR	SE176794.011	SE176794.012	SE176794.013	SE176794.014	SE176794.015
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	73	210	690	350	420

			TP7	TP8	TP8	ТР9	TP9
			SOIL	SOIL	SOIL	SOIL	SOIL
			1.1-1.3	0.5-0.7	1.0-1.7	0.4-0.6	1.3-1.5
							15/3/2018
PARAMETER	UOM	LOR	SE176794.016	SE176794.017	SE176794.018	SE176794.019	SE176794.020
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	620	95	390	170	350

			TP9	TP10	TP10	TP11	TP11
			SOIL	SOIL	SOIL	SOIL	SOIL
			1.6-1.7	0.2-0.4	1.8-2.0	0.5-0.7	1.8-2.0
PARAMETER	UOM	LOR	SE176794.021	SE176794.022	SE176794.023	SE176794.024	SE176794.025
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	730	43	230	160	340

			TP12
			SOIL 0.4-0.6 15/3/2018
PARAMETER	UOM	LOR	SE176794.026
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	120

ANALYTICAL RESULTS

SE176794 R0

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 22/3/2018

			TP1	TP1	TP7	TP7	TP9
PARAMETER	UOM	LOR	SOIL 0.2-0.4 15/3/2018 SE176794.001	SOIL 0.5-0.7 15/3/2018 SE176794.002	SOIL 0.3-0.5 15/3/2018 SE176794.015	SOIL 1.1-1.3 15/3/2018 SE176794.016	SOIL 0.4-0.6 15/3/2018 SE176794.019
Exchangeable Sodium, Na	mg/kg	2	300	230	460	730	430
Exchangeable Sodium, Na	meq/100g	0.01	1.3	1.0	2.0	3.2	1.9
Exchangeable Sodium Percentage*	%	0.1	12.5	10.3	14.1	21.1	15.2
			TP9	TP9	TP11	TP12	
PARAMETER	UOM	LOR	SOIL 1.3-1.5 15/3/2018 SE176794.020	SOIL 1.6-1.7 15/3/2018 SE176794.021	SOIL 1.8-2.0 15/3/2018 SE176794.025	SOIL 0.4-0.6 15/3/2018 SE176794.026	
Exchangeable Sodium, Na	mg/kg	2	500	720	700	400	
Exchangeable Sodium, Na	meq/100g	0.01	2.2	3.1	3.0	1.7	
Exchangeable Sodium Percentage*	%	0.1	16.4	22.6	20.8	16.8	

Soluble Anions (1:5) in Soil by Ion Chromatography [AN245] Tested: 22/3/2018

0.2-0.4 0.5-0.7 0.3-0.5 1.1-1. 15/3/2018 15/3/2018 15/3/2018 15/3/20		1.1-1.3 15/3/2018 SE176794.016				LOR	UOM	PARAMETER
0.2-0.4 0.5-0.7 0.3-0.5 1.1-1.								
	0.4-0.6	1.1-1.3	0.3-0.5	0.5-0.7	0.2-0.4			
SOIL SOIL SOIL SOIL SOIL								
	SOIL	SOIL	SOIL	SOIL	SOIL			
TP1 TP1 TP7 TP7	ТР9	TP7		191	1P1			

			TP9	TP9	TP11	TP12
			SOIL	SOIL	SOIL	SOIL
			1.3-1.5	1.6-1.7	1.8-2.0	0.4-0.6
				15/3/2018	15/3/2018	
PARAMETER	UOM	LOR	SE176794.020	SE176794.021	SE176794.025	SE176794.026
Sulfate	mg/kg	5	170	390	300	96

SE176794 R0

Moisture Content [AN002] Tested: 21/3/2018

			TP1	TP1	TP2	TP2	TP2
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.4	0.5-0.7	0.4-0.6	1.0-1.2	1.4-1.5
PARAMETER	UOM	LOR	SE176794.001	SE176794.002	SE176794.003	SE176794.004	SE176794.005
% Moisture	%w/w	0.5	9.0	16	15	14	13

			TP3	TP3	TP4	TP4	TP4
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.6-0.8	1.2-1.4	0.2-0.4	0.8-1.0	1.4-1.6
				15/3/2018	15/3/2018		
PARAMETER	UOM	LOR	SE176794.006	SE176794.007	SE176794.008	SE176794.009	SE176794.010
% Moisture	%w/w	0.5	16	12	17	12	9.6

			TP5	TP5	TP5	TP6	TP7
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.4-0.6	1.3-1.5	2.3-2.5	1.6-1.8	0.3-0.5
				15/3/2018	15/3/2018		
PARAMETER	UOM	LOR	SE176794.011	SE176794.012	SE176794.013	SE176794.014	SE176794.015
% Moisture	%w/w	0.5	15	15	14	17	14

			TP7	TP8	TP8	TP9	ТР9
			SOIL	SOIL	SOIL	SOIL	SOIL
			1.1-1.3	0.5-0.7	1.0-1.7	0.4-0.6	1.3-1.5
							15/3/2018
PARAMETER	UOM	LOR	SE176794.016	SE176794.017	SE176794.018	SE176794.019	SE176794.020
% Moisture	%w/w	0.5	17	17	19	16	16

			TP9	TP10	TP10	TP11	TP11
			SOIL	SOIL	SOIL	SOIL	SOIL
			1.6-1.7	0.2-0.4	1.8-2.0	0.5-0.7	1.8-2.0
							15/3/2018
PARAMETER	UOM	LOR	SE176794.021	SE176794.022	SE176794.023	SE176794.024	SE176794.025
% Moisture	%w/w	0.5	14	18	10	18	16

			TP12
			SOIL 0.4-0.6 15/3/2018
PARAMETER	UOM	LOR	SE176794.026
% Moisture	%w/w	0.5	15

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Salinity can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. Reference APHA 2510 B.
AN122	Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 1M Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable cations in meq/100g or soil can be pre-treated (aqueous ethanol/aqueous glycerol) prior to extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g.
AN122	The Exchangeable Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all in meq/100g) times 100. ESP can be used to categorise the sodicity of the soil as below : ESP < 6% non-sodic
	ESP 6-15% sodic ESP >15% strongly sodic Method is refernced to Rayment and Lyons, 2011, sections 15D3 and 15N1
AN245	Anions by Ion Chromatography: A water sample is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, CI, NO2, NO3 and SO4 are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B

FOOTNOTES

NATA accreditation does not cover the performance of this service. ** Indicative data, theoretical holding time exceeded

Not analysed. NVL Not validated. Insufficient sample for analysis. IS I NR Sample listed, but not received. UOM Unit of Measure. Limit of Reporting. LOR Raised/lowered Limit of î↓ Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi b.
- 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sqs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Indra Jworchan	Manager	Huong Crawford
Client	Geotechnique	Laboratory	SGS Alexandria Environmental
Address	P.O. Box 880 NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Email	indra.jworchan@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project	14160-1 St Bartholomew Place, Prospect	SGS Reference	SE176794 R0
Order Number	(Not specified)	Date Received	16 Mar 2018
Samples	26	Date Reported	23 Mar 2018

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Analysis Date

pH in soil (1:5)

9 items

Samples clearly labelled	Yes	Complete documentation received	Yes	
Sample container provider	Client	Sample cooling method	None	
Samples received in correct containers	Yes	Sample counts by matrix	26 Soil	
Date documentation received	15/3/18@9:54am	Type of documentation received	COC	
Samples received in good order	Yes	Samples received without headspace	Yes	
Sample temperature upon receipt	22.0°C	Sufficient sample for analysis	Yes	
Turnaround time requested	Standard			
·				

SGS Australia Pty Ltd ABN 44 000 964 278

SAMPLE SUMMARY

Environment, Health and Safety

Unit 16 33 Maddox St Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Australia t +6⁻ Australia f +6⁻

t +61 2 8594 0400 www.sgs.com.au f +61 2 8594 0499

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

ductivity and TDS by Coloulation - Sail

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1	SE176794.001	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	22 Mar 2018	22 Mar 2018
ГР1	SE176794.001	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	22 Mar 2018	22 Mar 2018
ГР2	SE176794.002	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	22 Mar 2018	22 Mar 2018
ГР2 ГР2	SE176794.003	LB143940						
ГР2 ГР2			15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	22 Mar 2018	22 Mar 2018
ГР2 ГР3	SE176794.005	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	22 Mar 2018	22 Mar 2018
	SE176794.006	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	22 Mar 2018	22 Mar 2018
ГРЗ ГР4	SE176794.007	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	22 Mar 2018	22 Mar 2018
	SE176794.008	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	22 Mar 2018	22 Mar 2018
FP4	SE176794.009	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	22 Mar 2018	22 Mar 2018
[P4	SE176794.010	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	22 Mar 2018	22 Mar 2018
TP5	SE176794.011	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	22 Mar 2018	22 Mar 2018
P5	SE176794.012	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	22 Mar 2018	22 Mar 2018
P5	SE176794.013	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	22 Mar 2018	22 Mar 2018
P6	SE176794.014	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	22 Mar 2018	22 Mar 2018
P7	SE176794.015	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	22 Mar 2018	22 Mar 2018
P7	SE176794.016	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	22 Mar 2018	22 Mar 2018
P8	SE176794.017	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	22 Mar 2018	22 Mar 2018
P8	SE176794.018	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	22 Mar 2018	22 Mar 2018
P9	SE176794.019	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	22 Mar 2018	22 Mar 2018
P9	SE176794.020	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	22 Mar 2018	22 Mar 2018
P9	SE176794.021	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	22 Mar 2018	22 Mar 2018
P10	SE176794.022	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	22 Mar 2018	22 Mar 2018
P10	SE176794.023	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	22 Mar 2018	22 Mar 2018
P11	SE176794.024	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	22 Mar 2018	22 Mar 2018
P11	SE176794.025	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	22 Mar 2018	22 Mar 2018
P12	SE176794.026	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	22 Mar 2018	22 Mar 2018
changeable Cations an	d Cation Exchange Capaci	v (CEC/ESP/SAR)					Method:	ME-(AU)-[ENV]AN
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
P1	SE176794.001	LB144152	15 Mar 2018	16 Mar 2018	12 Apr 2018	22 Mar 2018	12 Apr 2018	23 Mar 2018
P1	SE176794.001	LB144152	15 Mar 2018	16 Mar 2018	12 Apr 2018	22 Mar 2018	12 Apr 2018	23 Mar 2018
·P7	SE176794.002	LB144152	15 Mar 2018	16 Mar 2018	12 Apr 2018	22 Mar 2018	12 Apr 2018	23 Mar 2018 23 Mar 2018
P7					-		-	
	SE176794.016	LB144152	15 Mar 2018	16 Mar 2018	12 Apr 2018	22 Mar 2018	12 Apr 2018	23 Mar 2018
P9 P9	SE176794.019	LB144152	15 Mar 2018	16 Mar 2018	12 Apr 2018	22 Mar 2018	12 Apr 2018	23 Mar 2018
-	SE176794.020	LB144152	15 Mar 2018	16 Mar 2018	12 Apr 2018	22 Mar 2018	12 Apr 2018	23 Mar 2018
P9	SE176794.021	LB144152	15 Mar 2018	16 Mar 2018	12 Apr 2018	22 Mar 2018	12 Apr 2018	23 Mar 2018
P11	SE176794.025	LB144152	15 Mar 2018	16 Mar 2018	12 Apr 2018	22 Mar 2018	12 Apr 2018	23 Mar 2018
P12	SE176794.026	LB144152	15 Mar 2018	16 Mar 2018	12 Apr 2018	22 Mar 2018	12 Apr 2018	23 Mar 2018
pisture Content							Method:	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
P1	SE176794.001	LB144011	15 Mar 2018	16 Mar 2018	29 Mar 2018	21 Mar 2018	26 Mar 2018	22 Mar 2018
P1	SE176794.002	LB144011	15 Mar 2018	16 Mar 2018	29 Mar 2018	21 Mar 2018	26 Mar 2018	22 Mar 2018
P2	SE176794.003	LB144011	15 Mar 2018	16 Mar 2018	29 Mar 2018	21 Mar 2018	26 Mar 2018	22 Mar 2018
P2	SE176794.004	LB144011	15 Mar 2018	16 Mar 2018	29 Mar 2018	21 Mar 2018	26 Mar 2018	22 Mar 2018
P2	SE176794.005	LB144011	15 Mar 2018	16 Mar 2018	29 Mar 2018	21 Mar 2018	26 Mar 2018	22 Mar 2018
P3	SE176794.006	LB144011	15 Mar 2018	16 Mar 2018	29 Mar 2018	21 Mar 2018	26 Mar 2018	22 Mar 2018
P3	SE176794.007	LB144011	15 Mar 2018	16 Mar 2018	29 Mar 2018	21 Mar 2018	26 Mar 2018	22 Mar 2018
P4	SE176794.008	LB144011	15 Mar 2018	16 Mar 2018	29 Mar 2018	21 Mar 2018	26 Mar 2018	22 Mar 2018
P4	SE176794.009	LB144011	15 Mar 2018	16 Mar 2018	29 Mar 2018	21 Mar 2018	26 Mar 2018	22 Mar 2018
P4	SE176794.010	LB144011	15 Mar 2018	16 Mar 2018	29 Mar 2018	21 Mar 2018	26 Mar 2018	22 Mar 2018
P5	SE176794.011	LB144011	15 Mar 2018	16 Mar 2018	29 Mar 2018	21 Mar 2018	26 Mar 2018	22 Mar 2018
-	02.10104.011	201.4011	10 110 2010		20	21 1001 2010	20 1101 20 10	22 Mai 2010

16 Mar 2018

29 Mar 2018

21 Mar 2018

SE176794.012

SE176794.013

SE176794.014

SE176794.015

SE176794.016

SE176794.017

SE176794.018

SE176794.019

SE176794.020

LB144011

LB144011

LB144011

LB144011

LB144011

LB144011

LB144011

LB144011

LB144011

15 Mar 2018

TP5

TP5

TP6

TP7

TP7

TP8

TP8

TP9

TP9

22 Mar 2018

26 Mar 2018

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Moisture Content (continued) Method: ME-(AU)-[ENV]AN002 Sample Name Analysis Due Analysed Sample No. QC Ref Sampled Received Extraction Due Extracted TP9 SE176794.021 LB144011 15 Mar 2018 16 Mar 2018 29 Mar 2018 21 Mar 2018 26 Mar 2018 22 Mar 2018 TP10 SE176794.022 LB144011 15 Mar 2018 16 Mar 2018 29 Mar 2018 21 Mar 2018 26 Mar 2018 22 Mar 2018 TP10 SE176794.023 LB144011 15 Mar 2018 16 Mar 2018 29 Mar 2018 21 Mar 2018 26 Mar 2018 22 Mar 2018 TP11 SE176794.024 LB144011 15 Mar 2018 16 Mar 2018 29 Mar 2018 21 Mar 2018 26 Mar 2018 22 Mar 2018 TP11 LB144011 16 Mar 2018 SE176794.025 15 Mar 2018 29 Mar 2018 21 Mar 2018 26 Mar 2018 22 Mar 2018 TP12 SE176794.026 LB144011 15 Mar 2018 16 Mar 2018 29 Mar 2018 21 Mar 2018 26 Mar 2018 22 Mar 2018 pH in soil (1:5) Method: ME-(AU)-[ENV]AN101 Sample Na Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed TP1 SE176794 001 I B143940 15 Mar 2018 16 Mar 2018 22 Mar 2018 20 Mar 2018 21 Mar 2018 22 Mar 2018t TP1 SE176794.002 LB143940 15 Mar 2018 16 Mar 2018 22 Mar 2018 20 Mar 2018 21 Mar 2018 22 Mar 2018 TP2 SE176794.003 LB143940 15 Mar 2018 16 Mar 2018 22 Mar 2018 20 Mar 2018 21 Mar 2018 22 Mar 2018† TP2 SE176794.004 LB143940 15 Mar 2018 16 Mar 2018 22 Mar 2018 20 Mar 2018 21 Mar 2018 22 Mar 2018† TP2 SE176794.005 LB143940 15 Mar 2018 16 Mar 2018 22 Mar 2018 21 Mar 2018 20 Mar 2018 22 Mar 2018† TP3 SE176794.006 LB143940 15 Mar 2018 16 Mar 2018 22 Mar 2018 20 Mar 2018 21 Mar 2018 22 Mar 2018+ 15 Mar 2018 20 Mar 2018 21 Mar 2018 16 Mar 2018 22 Mar 2018 TP3 SE176794.007 LB143940 22 Mar 2018† TP4 SE176794.008 LB143940 15 Mar 2018 16 Mar 2018 22 Mar 2018 20 Mar 2018 21 Mar 2018 22 Mar 2018† TP4 SE176794 009 I B143940 15 Mar 2018 16 Mar 2018 22 Mar 2018 20 Mar 2018 21 Mar 2018 22 Mar 2018+ TP4 SE176794.010 LB143940 15 Mar 2018 16 Mar 2018 22 Mar 2018 20 Mar 2018 21 Mar 2018 22 Mar 2018† TP5 SE176794.011 LB143940 15 Mar 2018 16 Mar 2018 22 Mar 2018 20 Mar 2018 21 Mar 2018 22 Mar 2018† TP5 SE176794.012 LB143940 15 Mar 2018 16 Mar 2018 22 Mar 2018 20 Mar 2018 21 Mar 2018 22 Mar 2018+ TP5 SE176794.013 LB143940 15 Mar 2018 16 Mar 2018 22 Mar 2018 20 Mar 2018 21 Mar 2018 22 Mar 2018†

TP6	SE176794.014	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	21 Mar 2018	22 Mar 2018†
TP7	SE176794.015	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	21 Mar 2018	22 Mar 2018†
TP7	SE176794.016	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	21 Mar 2018	22 Mar 2018†
TP8	SE176794.017	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	21 Mar 2018	22 Mar 2018†
TP8	SE176794.018	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	21 Mar 2018	22 Mar 2018†
TP9	SE176794.019	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	21 Mar 2018	22 Mar 2018†
TP9	SE176794.020	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	21 Mar 2018	22 Mar 2018†
TP9	SE176794.021	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	21 Mar 2018	22 Mar 2018†
TP10	SE176794.022	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	21 Mar 2018	22 Mar 2018†
TP10	SE176794.023	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	21 Mar 2018	22 Mar 2018†
TP11	SE176794.024	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	21 Mar 2018	22 Mar 2018†
TP11	SE176794.025	LB143940	15 Mar 2018	16 Mar 2018	22 Mar 2018	20 Mar 2018	21 Mar 2018	22 Mar 2018†

16 Mar 2018

22 Mar 2018

20 Mar 2018

21 Mar 2018

22 Mar 2018†

Method: ME-(AU)-[ENVIAN245

Soluble Anions (1:5) in Soil by Ion Chromatography

SE176794.026

LB143940

15 Mar 2018

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1	SE176794.001	LB144081	15 Mar 2018	16 Mar 2018	22 Mar 2018	22 Mar 2018	19 Apr 2018	23 Mar 2018
TP1	SE176794.002	LB144081	15 Mar 2018	16 Mar 2018	22 Mar 2018	22 Mar 2018	19 Apr 2018	23 Mar 2018
TP7	SE176794.015	LB144081	15 Mar 2018	16 Mar 2018	22 Mar 2018	22 Mar 2018	19 Apr 2018	23 Mar 2018
TP7	SE176794.016	LB144081	15 Mar 2018	16 Mar 2018	22 Mar 2018	22 Mar 2018	19 Apr 2018	23 Mar 2018
TP9	SE176794.019	LB144081	15 Mar 2018	16 Mar 2018	22 Mar 2018	22 Mar 2018	19 Apr 2018	23 Mar 2018
TP9	SE176794.020	LB144081	15 Mar 2018	16 Mar 2018	22 Mar 2018	22 Mar 2018	19 Apr 2018	23 Mar 2018
TP9	SE176794.021	LB144081	15 Mar 2018	16 Mar 2018	22 Mar 2018	22 Mar 2018	19 Apr 2018	23 Mar 2018
TP11	SE176794.025	LB144081	15 Mar 2018	16 Mar 2018	22 Mar 2018	22 Mar 2018	19 Apr 2018	23 Mar 2018
TP12	SE176794.026	LB144081	15 Mar 2018	16 Mar 2018	22 Mar 2018	22 Mar 2018	19 Apr 2018	23 Mar 2018

TP12

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

METHOD BLANKS

SE176794 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Conductivity and TDS by Calculation - Soil			Meth	nod: ME-(AU)-[ENV]AN106
Sample Number	Parameter	Units	LOR	Result
LB143940.001	Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	0

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)				od: ME-(AU)-[ENV]AN122
Sample Number	Parameter	Units	LOR	Result
LB144152.001	Exchangeable Sodium, Na	mg/kg	2	0

Soluble Anions (1:5) in Soil by Ion Chromatography

Soluble Anions (1:5) in Soil by Ion Chromatography		Meth	od: ME-(AU)-[ENV]AN245	
Sample Number	Parameter	Units	LOR	Result
LB144081.001	Sulfate	mg/kg	5	<5.0

Method: ME-(AU)-[ENV]AN245

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Conductivity and TDS by Calculation - Soil Method: ME-(AU)-[ENV]AN106 Original Duplicate LOR Original Duplicate Criteria % RPD % Parameter Units SE176794.010 LB143940.014 Conductivity of Extract (1:5 dry sample basis) µS/cm 1 190 82.478022813 31 4 31 SE176794.020 LB143940.025 Conductivity of Extract (1:5 dry sample basis) µS/cm 1 350 69.110367063[,] 5 SE176794.026 LB143940.035 Conductivity of Extract (1:5 dry sample basis) µS/cm 120 52.523102981 31 27 1 **Moisture Content** Method: ME-(AU)-[ENV]AN002

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE176794.010	LB144011.011	% Moisture	%w/w	0.5	9.6	9.7	40	1
SE176794.020	LB144011.022	% Moisture	%w/w	0.5	16	15	37	5
SE176878.004	LB144011.033	% Moisture	%w/w	0.5	13	12	38	1
SE176945.003	LB144011.040	% Moisture	%w/w	0.5	9.3	8.8	41	6
pH in soil (1:5)						Meth	od: ME-(AU)-	ENVJAN10
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE176794.020	LB143940.025	pH	pH Units	0.1	5.1	5.1	32	0
SE176794.026	LB143940.035	рН	pH Units	0.1	5.6	5.6	32	1

Soluble Anions (1:5) in Soil by Ion Chromatography

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE176722A.013	LB144081.014	Sulfate	mg/kg	5	42	41	42	2
SE176794.026	LB144081.027	Sulfate	mg/kg	5	96	80	36	19

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Conductivity and TDS by Calculation - Soll Method: ME-(AU)-[ENV]AN1									
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %		
LB143940.002	Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	NA	303	85 - 115	94		

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Exchangeable Cations and Ca	d Cation Exchange Capacity (CEC/ESP/SAR) Method: ME-(AU)-[EN								
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %		
LB144152.002	Exchangeable Sodium, Na	mg/kg	2	NA	72.68	80 - 120	101		

pH in soil (1:5)					N	lethod: ME-(A	U)-[ENV]AN101
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB143940.003	рН	pH Units	0.1	7.4	7.415	98 - 102	100

Soluble Anions (1:5) in Soil by Ion Chromatography

Soluble Anions (1:5) in Soil by ion Chromatography Method: ME						Nethod: ME-(A	U)-[ENV]AN245
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB144081.002	Sulfate	mg/kg	5	90	100	70 - 130	90

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service .
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

GEOTECHNIQUE PTY LTD

Laboratory Test Request / Chain of Custody Record

							4722 2700						
Lemko Place				-	P O Box 880) 4722 6161				_		1 of 2
PENRITH NSW 2				PENRIT	H NSW 275	email: ii	nfo@geotech.c				Page		1
TO:	SGS ENVIRON	MENTAL SE	ERVICES				Sampling B	y:	JH	Job No:	14160/1		
	UNIT 16 33 MADDOX S	TREET								Droject	Dran and Compton Future i		
	ALEXANDRIA						1			Project:	ProposedCemetery Extension		
		1011 2010											
PH:	02 8594 0400			FAX: 0	2 8594 0499		Project Man	ager:	IJ	Location:	St Bartholomew Place, Prospect		
ATTN:	Ms Emily Yin							J					
S	Sampling d	letails								Results	required by:		
Location	Depth	Soil	Water	EC (1:5)	рН	SO4	ESP		Τ		Notes	T	Keep Sample
ι TP1 :	0.2-0.4	DSP									indes		V V
7 TP1 ·	0.2-0.4	DSP			~								×
3 TP2 '	0.3-0.7	DSP			•						ESP=Exchangeable Sodiu	m Percentage	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4 TP2	1.0-1.2	DSP					-						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
S TP2	1.4-1.5	DSP											~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5 TP3	0.6-0.8	DSP											~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
TP3	1.2-1.4	DSP							-				~~~~
A TP4	0.2-0.4	DSP											
TP4	0.2-0.4	DSP							-				~~~~
10 TP4	1.4-1.6	DSP											~~~~~
i TP5	0.4-0.6	DSP											~~~~
12 TP5	1.3-1.5	DSP											~~~~
) TP5	2.3-2.5	DSP										-+	~~~~
14 TP6	1.6-1.8	DSP									SGS EHS Alexandria Laborato	Jry —	
	0.3-0.5	DSP			~						2())4() (2) (44)(4) (2) (4) (34)(44)(3) (34)(44)(3)		
16 TP7	1.1-1.3	DSP			~				+		511 2011 21 (DOLDER (DE 12000)) C 2 00 02 (DE 1000)		
7 TP8	0.5-0.7	DSP					<u> </u>				11. 20. 14. 00. 01. 01. 01. 01. 01. 01. 01. 01. 01		~~~~
14 TP8	1.0-1.7	DSP									SE176794 COC		~~~~
19 TP9.	0.4-0.6	DSP			~								
10 TP9	1.3-1.5	DSP									Received: 16-Mar-2018	<u> </u>	
2) TP9	1.6-1.7	DSP			~	~							
-1115	1.0-1.7	1001	1		-	1	<u> </u>				Received by		·
Nan	ne		S	ignature		Date		Name			Signature	10	12/11
Indra Jw	rorchan					25/01/2017	100	se/	-	CE	elle	161	SHECC
Legend:											et .	9	/
NG					ndisturbed soi					le (small plastic			
NP				DSG D	isturbed soil sa	ample (glass ja	a √ ·	Test requi	red		# Geotechnique Screen		

GEOTECHNIQUE PTY LTD

Laboratory Test Request / Chain of Custody Record

							4722 2700						
Lemko Place					P O Box 880	Fax: (02	2) 4722 6161						
PENRITH NSW :				PENRIT	"H NSW 2751	email: ii	nfo@geotech.	com.au				Page	2 of 2
то:	SGS ENVIROI UNIT 16	MENTAL SE	ERVICES				Sampling E	By:	JH	Job No:	14160/1		
	33 MADDOX S	TREET								Project:	Propose	dCemetery Extension	
	ALEXANDRIA									Toject.	riopose	accemetery Extension	
PH: ATTN:	02 8594 0400			FAX: 0	2 8594 0499		Project Mar	nager:	IJ	Location:	St Bartho	olomew Place, Prospect	
	Ms Emily Yin Sampling c	lotaile		1	License years	a and a second secon	1			Poquito r	oquiro		
		T	T	l	Т		Τ			Results r	equired	a by:	
Location	Depth	Soil	Water	EC (1:5)	рН	SO4	ESP					Notes	Keep Sample
22 TP10	0.2-0.4	DSP											\checkmark
23 TP10	1.8-2.0	DSP		~								ESP=Exchangeable Sodium Percentag	~
24 TP11	0.5-0.7	DSP											~
25 TP11	1.8-2.0	DSP		V	~	~	~						\checkmark
26 TP12 _	0.4-0.6	DSP			~	~	~						\checkmark
									_				
				-									
		-											
						- Andrew - A			-				
				-									
	1	Reli	nquished by	I	1		<u> </u> l		1				
Nar	me	Rein		gnature	1	Date		Name			Receiv	Signature	
Indra Jw						25/01/2017	6	Name	2	D	27	signature ///	TREZ .
Legend:											-11	10/3	10 000
WG					ndisturbed soil s			Disturbed	soil samp	le (small plastic	bag)	* Purge & Trap	
WP				DSG D	isturbed soil sam	ple (glass ja		Test requir	ed			# Geotechnique Screen	

SAMPLE RECEIPT ADVICE

CLIENT DETAIL	S	LABORATORY DETA	NLS	
Contact	Indra Jworchan	Manager	Huong Crawford	
Client	Geotechnique	Laboratory	SGS Alexandria Environmental	
Address	P.O. Box 880 NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 4722 2700	Telephone	+61 2 8594 0400	
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499	
Email	indra.jworchan@geotech.com.au	Email	au.environmental.sydney@sgs.com	
Project	14160-1 St Bartholomew Place, Prospect	Samples Received	Fri 16/3/2018	
Order Number	(Not specified)	Report Due	Fri 23/3/2018	
Samples	26	SGS Reference	SE176794	

_ SUBMISSION DETAILS _

This is to confirm that 26 samples were received on Friday 16/3/2018. Results are expected to be ready by COB Friday 23/3/2018. Please quote SGS reference SE176794 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested
- Yes Client Yes 15/3/18@9:54am Yes 22.0°C Standard

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes None 26 Soil COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

SAMPLE RECEIPT ADVICE

CLIENT DETAILS .

Client Geotechnique

- SUMMARY OF ANALYSIS

Project 14160-1 St Bartholomew Place, Prospect

No.	Sample ID	Conductivity and TDS by Calculation - Soil	Exchangeable Cations and Cation Exchange Capacity	Moisture Content	pH in soil (1:5)	Soluble Anions (1:5) in Soil by Ion Chromatography
001	TP1 0.2-0.4	1	3	1	1	1
002	TP1 0.5-0.7	1	3	1	1	1
003	TP2 0.4-0.6	1	-	1		_
004	TP2 1.0-1.2	1	_	1	-	-
005	TP2 1.4-1.5	1	-	1	_	-
006	TP3 0.6-0.8	1	_	1	_	-
007	TP3 1.2-1.4	1	-	1	-	-
008	TP4 0.2-0.4	1	_	1	_	-
009	TP4 0.8-1.0	1	_	1	-	-
010	TP4 1.4-1.6	1	_	1	-	-
011	TP5 0.4-0.6	1	-	1	-	_
012	TP5 1.3-1.5	1	_	1	-	_
013	TP5 2.3-2.5	1	_	1	-	_
014	TP6 1.6-1.8	1	-	1	_	-
015	TP7 0.3-0.5	1	3	1	1	1
016	TP7 1.1-1.3	1	3	1	1	1
017	TP8 0.5-0.7	1	_	1	_	_
018	TP8 1.0-1.7	1	_	1	_	_
019	TP9 0.4-0.6	1	3	1	1	1
020	TP9 1.3-1.5	1	3	1	1	1
021	TP9 1.6-1.7	1	3	1	1	1
022	TP10 0.2-0.4	1	-	1	-	-
023	TP10 1.8-2.0	1	-	1	-	-
024	TP11 0.5-0.7	1	_	1		_

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

SAMPLE RECEIPT ADVICE

CLIENT DETAILS

Client Geotechnique

Project 14160-1 St Bartholomew Place, Prospect

SUMMARY	OF ANALYSIS		1	1		
No.	Sample ID	Conductivity and TDS by Calculation - Soil	Exchangeable Cations and Cation Exchange Capacity	Moisture Content	pH in soil (1:5)	Soluble Anions (1:5) in Soil by Ion Chromatography
025	TP11 1.8-2.0	1	3	1	1	1
026	TP12 0.4-0.6	1	3	1	1	1

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .